2.函数与导数1.函数是非空数集到非空数集的映射,作为一个映射,就必须满足映射的条件,“每元有象,且象唯一”只能一对一或者多对一,不能一对多.[回扣问题1]若A={1,2,3},B={4,1},则从A到B的函数共有________个;其中以B为值域的函数共有______个.答案862.求函数的定义域,关键是依据含自变量x的代数式有意义来列出相应的不等式(组)求解,如开偶次方根,被开方数一定是非负数;对数式中的真数是正数;列不等式时,应列出所有的不等式,不应遗漏.若f(x)定义域为[a,b],复合函数f[g(x)]定义域由a≤g(x)≤b解出;若f[g(x)]定义域为[a,b],则f(x)定义域相当于x∈[a,b]时g(x)的值域.[回扣问题2]已知f(x)=-x2+10x-9,g(x)=[f(x)]2+f(x2)的定义域为________.答案[1,3]3.求函数解析式的主要方法:(1)代入法;(2)待定系数法;(3)换元(配凑)法;(4)解方程法等.[回扣问题3]已知f(x)-4f(1x)=-15x,则f(x)=________.答案x+4x4.分段函数是在其定义域的不同子集上,分别用不同的式子来表示对应关系的函数,它是一个函数,而不是几个函数.[回扣问题4]已知函数f(x)=2x3,x<0-tanx,0≤x<π2,则f(f(π4))=________.答案-25.函数的奇偶性f(x)是偶函数⇔f(-x)=f(x)=f(|x|);f(x)是奇函数⇔f(-x)=-f(x);定义域含0的奇函数满足f(0)=0;定义域关于原点对称是函数为奇函数或偶函数的必要不充分的条件;判断函数的奇偶性,先求定义域,再找f(x)与f(-x)的关系.[回扣问题5]函数f(x)是定义域为R的奇函数,当x>0时,f(x)=x(1+x)+1,求f(x)的解析式.答案f(x)=x(1+x)+1,x>00,x=0-x2+x-1,x<06.函数的周期性由周期函数的定义“函数f(x)满足f(x)=f(a+x)(a>0),则f(x)是周期为a的周期函数”得:①函数f(x)满足-f(x)=f(a+x),则f(x)是周期为2a的周期函数;②若f(x+a)=1f(x)(a≠0)成立,则T=2a;③若f(x+a)=-1f(x)(a≠0)恒成立,则T=2a.[回扣问题6]设f(x)是R上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(47.5)等于______.答案-0.57.函数的单调性①定义法:设x1,x2∈[a,b],x1≠x2那么(x1-x2)[f(x1)-f(x2)]>0⇔f(x1)-f(x2)x1-x2>0⇔f(x)在[a,b]上是增函数;(x1-x2)[f(x1)-f(x2)]<0⇔f(x1)-f(x2)x1-x2<0⇔f(x)在[a,b]上是减函数;②导数法:注意f′(x)>0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0;∴f′(x)>0是f(x)为增函数的充分不必要条件.③复合函数由同增异减的判定法则来判定.④求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“和”连接,或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.[回扣问题7]函数f(x)=x3-3x的单调递增区间是________.答案(-∞,-1),(1,+∞)8.求函数最值(值域)常用的方法:(1)单调性法:适合于已知或能判断单调性的函数;(2)图象法:适合于已知或易作出图象的函数;(3)基本不等式法:特别适合于分式结构或两元的函数;(4)导数法:适合于可导函数;(5)换元法(特别注意新元的范围);(6)分离常数法:适合于一次分式;(7)有界函数法:适用于含有指、对数函数或正、余弦函数的式子.无论用什么方法求最值,都要考查“等号”是否成立,特别是基本不等式法,并且要优先考虑定义域.[回扣问题8]函数y=2x2x+1(x≥0)的值域为________.答案12,19.常见的图象变换(1)平移变换①函数y=f(x+a)的图象是把函数y=f(x)的图象沿x轴向左(a>0)或向右(a<0)平移|a|个单位得到的.②函数y=f(x)+a的图象是把函数y=f(x)的图象沿y轴向上(a>0)或向下(a<0)平移|a|个单位得到的.(2)伸缩变换①函数y=f(ax)(a>0)的图象是把函数y=f(x)的图象沿x轴伸缩为原来的1a得到的.②函数y=af(x)(a>0)的图象是把函数y=f(x)的图象沿y轴伸缩为原来的a倍得到的.(3)对称变换①证明函数图象的对称性,即证图象上任意点关于对称中心(轴)的对称点仍在图象上;②函数y=f(x)与y=-f(-x)的图象关于原点成中心对称;③函数y=f(x)与y=f(-x)的图象关于直线x=0(y轴)对称;函数y=f(x)与函数y=-f(x)的图象关于直线y=0(x轴)对称.[回扣问题9]要得到y=lgx+310的图象,只需将y=lgx的图象________.答案向左平移3个单位,再向下平移1个单位10.二次函数问题(1)处理二次函数的问题勿忘数形结合,二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向,二看对称轴与所给区间的相对位置关系.(2)二次函数解析式的三种形式:①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-h)2+k(a≠0);③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(3)一元二次方程实根分布:先观察二次项系数、Δ与0的关系、对称轴与区间关系及有穷区间端点函数值符号,再根据上述特征画出草图.尤其注意若原题中没有指出是“二次”方程、函数或不等式,要考虑到二次项系数可能为零的情形.[回扣问题10]若关于x的方程ax2-x+1=0至少有一个正根,则a的范围为________.答案-∞,1411.指、对数函数(1)对数运算性质已知a>0且a≠1,b>0且b≠1,M>0,N>0.则loga(MN)=logaM+logaN,logaMN=logaM-logaN,logaMn=nlogaM,对数换底公式:logaN=logbNlogba.推论:logamNn=nmlogaN;logab=1logba.(2)指数函数与对数函数的图象与性质可从定义域、值域、单调性、函数值的变化情况考虑,特别注意底数的取值对有关性质的影响,另外,指数函数y=ax的图象恒过定点(0,1),对数函数y=logax的图象恒过定点(1,0).[回扣问题11]设a=log36,b=log510,c=log714,则a,b,c的大小关系是________.答案a>b>c12.幂函数形如y=xα(α∈R)的函数为幂函数.(1)①若α=1,则y=x,图象是直线.②当α=0时,y=x0=1(x≠0)图象是除点(0,1)外的直线.③当0<α<1时,图象过(0,0)与(1,1)两点,在第一象限内是上凸的.④当α>1时,在第一象限内,图象是下凸的.(2)增减性:①当α>0时,在区间(0,+∞)上,函数y=xα是增函数,②当α<0时,在区间(0,+∞)上,函数y=xα是减函数.[回扣问题12]函数f(x)=-12x的零点个数为________.答案112x13.函数与方程(1)函数y=f(x)的零点就是方程f(x)=0的根,也是函数y=f(x)的图象与x轴交点的横坐标.(2)y=f(x)在[a,b]上的图象是一条连续不断的曲线,且f(a)f(b)<0,那么f(x)在(a,b)内至少有一个零点,即至少存在一个x0∈(a,b)使f(x0)=0.这个x0也就是方程f(x)=0的根.(3)用二分法求函数零点[回扣问题13](判断题)函数f(x)=2x+3x的零点所在的一个区间是(-1,0).()答案√14.导数的几何意义和物理意义(1)函数y=f(x)在点x0处的导数的几何意义:函数y=f(x)在点x0处的导数是曲线y=f(x)在P(x0,f(x0))处的切线的斜率f′(x0),相应的切线方程是y-y0=f′(x0)(x-x0).(2)v=s′(t)表示t时刻即时速度,a=v′(t)表示t时刻加速度.注意:过某点的切线不一定只有一条.[回扣问题14]已知函数f(x)=x3-3x,过点P(2,-6)作曲线y=f(x)的切线,则此切线的方程是________.答案3x+y=0或24x-y-54=015.利用导数判断函数的单调性:设函数y=f(x)在某个区间内可导,如果f′(x)>0,那么f(x)在该区间内为增函数;如果f′(x)<0,那么f(x)在该区间内为减函数;如果在某个区间内恒有f′(x)=0,那么f(x)在该区间内为常数.注意:如果已知f(x)为减函数求参数取值范围,那么不等式f′(x)≤0恒成立,但要验证f′(x)是否恒等于0.增函数亦如此.`[回扣问题15]函数f(x)=ax3-x2+x-5在R上是增函数,则a的取值范围是________.解析f(x)=ax3-x2+x-5的导数f′(x)=3ax2-2x+1.由f′(x)=3ax2-2x+1≥0,得a>0,Δ=4-12a≤0,解得a≥13.a=13时,f′(x)=(x-1)2≥0,且只有x=1时,f′(x)=0,∴a=13符合题意.答案13,+∞答案x=116.导数为零的点并不一定是极值点,例如:函数f(x)=x3,有f′(0)=0,但x=0不是极值点.[回扣问题16]函数f(x)=14x4-13x3的极值点是________.