高考立体几何专题复习

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1高考数学分类汇编:立体几何一、选择题:1.在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行2.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如右图所示,则该集合体的俯视图为2.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于()A.3B.2C.23D.64.如图,M是正方体1111ABCDABCD的棱1DD的中点,给出下列四个命题:①过M点有且只有一条直线与直线11,ABBC都相交;②过M点有且只有一条直线与直线11,ABBC都垂直;③过M点有且只有一个平面与直线11,ABBC都相交;④过M点有且只有一个平面与直线11,ABBC都平行.其中真命题是A.②③④B.①③④C.①②④D.①②③5.设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为(A)3a2(B)6a2(C)12a2(D)24a226.已知,,,SABC是球O表面上的点,SAABC平面,ABBC,1SAAB,2BC,则球O的表面积等于(A)4(B)3(C)2(D)7.一个几何体的三视图如右图,该几何体的表面积是(A)372(B)360(C)292(D)2808.若某几何体的三视图如图所示,则此几何体的体积是(A)3523cm3B)3203cm3(C)2243cm3(D)1603cm39.如图ABC为正三角形,'''////AABBCC,''''32CCBBCCAB平面ABC且3AA,则多面体'''ABCABC的正视图(也称主视图)是w_w*w.k_s_5u.c*o*m10.到两互相垂直的异面直线的距离相等的点(A)只有1个(B)恰有3个(C)恰有4个(D)有无穷多个11.若某空间几何体的三视图如图所示,则该几何体的体积是(A)2(B)1(C)23(D)1312.用a、b、c表示三条不同的直线,y表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥y,b∥y,则a∥b;④若a⊥y,b⊥y,则a∥b.A.①②B.②③C.①④D.③④313.直三棱柱111ABCABC中,若90BAC,1ABACAA,则异面直线1BA与1AC所成的角等于(A)30°(B)45°(C)60°(D)90°14.正方体ABCD-1111ABCD中,1BB与平面1ACD所成角的余弦值为(A)23(B)33(C)23(D)6315.已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A)233(B)433(C)23(D)83316.与正方体ABCD—A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点(A)有且只有1个(B)有且只有2个(C)有且只有3个(D)有无数个17.已知三棱锥SABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为(A)34(B)54(C)74(D)34二、填空题:1.一个几何体的三视图如图所示,则这个几何体的体积为2.长方体1111ABCDABCD的顶点均在同一个球面上,11ABAA,2BC,则A,B两点间的球面距离为3.已知四棱椎PABCD的底面是边长为6的正方形,侧棱PA底面ABCD,且8PA,则该四棱椎的体积是4.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.5.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的______①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱6.圆柱形容器内盛有高度为3cm的水,若放入三个相同的珠(球的半么与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是____cm.PDCBA4AB7.已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M与圆N的公共弦,4AB,若3OMON,则两圆圆心的距离MN。8.如图,二面角l的大小是60°,线段AB.Bl,AB与l所成的角为30°.则AB与平面所成的角的正弦值是.三、解答题:1.在五面体ABCDEF中,ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=22,∠BAD=∠CDA=45°.(Ⅰ)求异面直线CE与AF所成角的余弦值;(Ⅱ)证明CD⊥平面ABF;(Ⅲ)求二面角B-EF-A的正切值2.如图,在长方体ABCD–A1B1C1D1中,E,H分别是A1B1,D1C1上的点(点E与B1不重合),且EH//A1D1。过EH的平面与棱BB1,CC1相交,交点分别为F,G.(I)证明:AD//平面EFGH;(II)设AB=2AA1=a2在长方体ABCD-A1B1C1D1内随机选取一点,记该点取自于几何体A1ABFE–D1DCGH内的概率为p.当点E,F分别在棱A1B1,B1B上运动且满足EF=a时,求p的最小值.3.如图,正方形ABCD和四边形ACEF所在的平面互相垂直。EF//AC,AB=2,CE=EF=1(Ⅰ)求证:AF//平面BDE;(Ⅱ)求证:CF⊥平面BDE;OMNEAB54.BCD与MCD都是边长为2的正三角形,平面MCD平面BCD,AB平面BCD,23AB.(1)求直线AM与平面BCD所成角的大小;(2)求平面ACM与平面BCD所成二面角的正弦值.5.如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°.E为线段AB的中点,将△ADE沿直线DE翻折成△A’DE,使平面A’DE⊥平面BCD,F为线段A’C的中点。(Ⅰ)求证:BF∥平面A’DE;(Ⅱ)M为线段DE的中点,求直线FM与平面A’DE所成角的余弦值6.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,(Ⅰ)求证:FH∥平面EDB;(Ⅱ)求证:AC⊥平面EDB;(Ⅲ)求四面体B—DEF的体积;7.如图,棱柱111ABCABC的侧面11BCCB是菱形,11BCAB(Ⅰ)证明:平面1ABC平面11ABC;(Ⅱ)设D是11AC上的点,且1//AB平面1BCD,求11:ADDC的值.ABCDEFH68.如图弧AEC是半径为a的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC平面BED,FB=a5(1)证明:EBFD(2)求点B到平面FED的距离.9.四棱锥PABCD中,底面ABCD为矩形,PA面ABCD,2PAAB,E是棱PB的中点.(Ⅰ)证明:AE平面PBC;(Ⅱ)若1AD,求二面角BECD的平面角的余弦值.10.如图所示,在长方体1111ABCDABCD中,AB=AD=1,AA1=2,M是棱CC1的中点(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;(Ⅱ)证明:平面ABM⊥平面A1B1M11.在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.(Ⅰ)证明:EF∥平面PAD;(Ⅱ)求三棱锥E—ABC的体积V.712.如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.13.在正方体ABCD-A′B′C′D′中,点M是棱AA′的中点,点O是对角线BD′的中点.(Ⅰ)求证:OM为异面直线AA′和BD′的公垂线;(Ⅱ)求二面角M-BC′-B′正切值;w_ww.k#s5_u.co*m14.某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.(1)请画出该安全标识墩的侧(左)视图;(2)求该安全标识墩的体积(3)证明:直线BD平面PEGDABCDMOABC815.已知正方体1111ABCDABCD的棱长为2,点E是正方形11BCCB的中心,点F、G分别是棱111,CDAA的中点.设点11,EG分别是点E,G在平面11DCCD内的正投影.(1)求以E为顶点,以四边形FGAE在平面11DCCD内的正投影为底面边界的棱锥的体积;(2)证明:直线1FG平面1FEE;16.DC平面ABC,//EBDC,22ACBCEBDC,120ACB,,PQ为,AEAB中点(I)证明://PQ平面ACD;(II)求AD与平面ABE所成角的正弦值.17.如图,四棱锥PABCD的底面是正方形,PDABCD底面,点E在棱PB上.(Ⅰ)求证:平面AECPDB平面;(Ⅱ)当2PDAB且E为PB的中点,求AE与平面PDB所成的角的大小.zyxE1G1918.如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1(Ⅰ)证明:AB=AC(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小19.如图,在直三棱柱111ABCABC中,E、F分别是1AB、1AC的中点,点D在11BC上,11ADBC求证:(1)EF∥平面ABC;(2)平面1AFD平面11BBCC.20.在四棱锥PABCD中,底面ABCD是矩形,PA平面ABCD,4PAAD,2AB.以AC的中点O为球心、AC为直径的球面交PD于点M,交PC于点N.(1)求证:平面ABM⊥平面PCD;(2)求直线CD与平面ACM所成的角的大小;(3)求点N到平面ACM的距离.(04山东文科)如图,已知四棱锥P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离;(II)求面APB与面CPB所成二面角的大小.ACBA1B1C1DENODMCBPA10(16)已知mn、是不同的直线,、是不重合的平面,给出下列命题:①若//,,,mn则//mn②若,,//,mnm则//③若,,//mnmn,则//④,mn是两条异面直线,若//,//,//,//mmnn,则//上面的命题中,真命题的序号是______(写出所有真命题的序号)16.已知a、b为不垂直的异面直线,是一个平面,则a、b在上的射影有可能是.①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).10.已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H,设四面体EFGH的表面积为T,则ST等于()A.91B.94C.41D.31(05山东文科)如图,已知长方体1111ABCDABCD,12,1ABAA,直线BD与平面11AABB所成的角为030,AE垂直BD于,EF为11AB的中点.(Ⅰ)求异面直线AE与BF所成的角;(Ⅱ)求平面BDF与平面1AAB所成二面角(锐角)的大小;(Ⅲ)求点A到平面BDF的距离奎屯王新敞新疆(06山东理科)如图,已知平面A1B1C1平行于三棱锥V-ABC的底面ABC,等边∆AB1C所在的平面与底面ABC垂直,且ACB=90°,设AC=2a,BC=a(1)求证直线B1C1是异面直线AB1与A1C1的公垂线;(2)求点A到平面VBC的距离;(3)求二面角A-VB-C的大小.A1B1C1D1FEDCBA11(16)已知m、n是不同的直线,,是不重合的平面,给出下列命题:①若//m,则m平行于平面内的任意一条直线奎屯王新敞新疆②若,,//,//,mnmn则//奎屯王新敞新疆③若,,//mnmn,则//奎屯王新敞新疆

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功