第十九章矩形菱形与正方形19.2.2菱形的性质在平行四边形中,如果内角大小保持不变仅改变边的长度,能否得到一个特殊的平行四边形?平行四边形有一组邻边相等的平行四边形菱形邻边相等活动一:有一组的叫做邻边相等平行四边形ADCB∵四边形ABCD是平行四边形AB=BC∴四边形ABCD是菱形菱形将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开即可.你知道其中的道理吗?如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?已知四边形ABCD是菱形ABCDO123456781、图中有哪些相等的线段?2、图中有哪些相等的角?3、图中有哪些等腰三角形?4、图中有哪些直角三角形?5、菱形是轴对称图形吗?它有几条对称轴?分别是什么?对称轴间有什么关系?相等的线段:相等的角:等腰三角形有:直角三角形有:全等三角形有:菱形ABCD中AB=CD=AD=BCOA=OCOB=OD∠DAB=∠BCD∠ABC=∠CDA∠AOB=∠DOC=∠AOD=∠BOC=90°∠1=∠2=∠3=∠4∠5=∠6=∠7=∠8△ABC△DBC△ACD△ABDRt△AOBRt△BOCRt△CODRt△DOARt△AOB≌Rt△BOC≌Rt△COD≌Rt△DOA△ABD≌△BCD△ABC≌△ACDABCDO12345678由于平行四边形的对边相等,而菱形的邻边相等,故:菱形的性质2:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。菱形是特殊的平行四边形,具有平行四边形的所有性质.菱形的性质:BDAC菱形的性质1:菱形的四条边都相等。又:已知:菱形ABCD的对角线AC和BD相交于点O,如下图,证明:∵四边形ABCD是菱形ABCDO在△ABD中,又∵BO=DO∴AB=AD(菱形的四条边都相等)∴AC⊥BD,AC平分∠BAD同理:AC平分∠BCD;BD平分∠ABC和∠ADC求证:AC⊥BD;AC平分∠BAD和∠BCD;BD平分∠ABC和∠ADC命题:菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;菱形的两条对角线互相平分菱形的两组对边平行且相等边对角线角数学语言菱形的四条边相等菱形的两组对角分别相等菱形的邻角互补菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角。∵四边形ABCD是菱形∥=∴ADBCABCD∥=∴AB=BC=CD=DAADCBO∴∠DAC=∠BAC∠DCA=∠BCA∠ADB=∠CDB∠ABD=∠CBDAC⊥BD∴OA=OC;OB=OD∴∠DAB=∠DCB∠ADC=∠ABC∴∠DAB+∠ABC=180°【菱形的面积公式】菱形是特殊的平行四边形,那么能否利用平行四边形面积公式计算菱形的面积吗?菱形ABCDOES菱形=BC●AE思考:计算菱形的面积除了上式方法外,利用对角线能计算菱形的面积公式吗?21ABCD=S△ABD+S△BCD=AC×BDS菱形面积:S菱形=底×高=对角线乘积的一半1.菱形具有而矩形不一定有的性质是()(A)对角线互相平分(B)四条边都相等(C)对角相等(D)邻角互补牛刀小试ABCDEF122.已知:如图,在菱形ABCD中,直线AE交边BC于点E,直线AF交CD于点F,且BE=DF求证:21BABCD例1如图,菱形花坛ABCD的边长为20m,∠ABC=60度,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(分别精确到0.01m和0.01m)O22222004.3462164.34220230010201020212130602121mBDACSBOBDmAOACmAOABBOmAB,AOOABRtABCABOBD,ACABCD:ABCD菱形花坛的面积花坛的两条小路长中在是菱形花坛解例1变形DOACB菱形ABCD的周长为16,相邻两角的度数比为1:2.⑴求菱形ABCD的对角线的长;⑵求菱形ABCD的面积.有关菱形问题可转化为直角三角形或等腰三角形的问题来解决变形2.在菱形ABCD中,对角线AC,BD相交于点O,∠BAC=30°,BD=6.求菱形的边长和对角线AC的长ABCDO解:∵四边形ABCD是菱形,∴AB=AD(菱形的定义)AC平分∠BAD(菱形的每条对角线平分一组对角)∵∠BAC=30°∴∠BAD=60°又∵OB=OD=3(平行四边形的对角线互相平分)AC⊥BD(菱形的对角线互相垂直)由勾股定理,得AO=AC=2AO=∴△ABD是等边三角形.AB=BD=63633362222BOAB变式3:如图,菱形ABCD的边长为4cm,∠BAD=1200。对角线AC、BD相交于点O,求这个菱形的对角线长和面积。。ODCBA解:∵∠BAD=1200∴∠BAC=600又∵AB=BC∴△BAC是等边三角形∴AC=4cm∴BO=2√3∴BD=4√3=8√3BDACS21变式4已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AB=1。求(1)∠ABC的度数;(2)对角线AC、BD的长;(3)菱形ABCD的面积。ABCDEO1.已知菱形的周长是12cm,那么它的边长是______.2.菱形ABCD中∠ABC=60度,则∠BAC=_______.ODCBA3cm60度3、菱形的两条对角线长分别为6cm和8cm,则菱形的边长是()CA.10cmB.7cmC.5cmD.4cmABCDO344.在菱形ABCD中,AE⊥BC,AF⊥CD,E、F分别为BC,CD的中点,那么∠EAF的度数是()FECABDA.75°B.60°C.45°D.30°B5、四边形ABCD是菱形,O是两条对角线的交点,已知AB=5cm,AO=4cm,求对角线BD的长。ABCDO94522222OAABOB解:∵四边形ABCD是菱形∴AC⊥BD∴∴OB=3∴BD=2OB=6cm543有关菱形问题可转化为直角三角形或等腰三角形的问题来解决6已知:如图,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F.求证:EF⊥AD;321ABCDEF8、如图,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE,求证:EB=OA;ABCDOE7、已知,菱形对角线长分别为12cm和16cm,求菱形的高。1.你的收获是什么?你的困惑是什么?2.你会用类比的学习方法学习特殊四边形知识吗?课堂反思四边形集合平行四边形集合菱形集合矩形集合四、课堂小结:矩形和菱形的性质矩形菱形定义有一个角是直角的平行四边形有一组邻边相等的平行四边形性质1、具有平行四边形的一切性质2、四个角都是直角3、矩形的对角线相等1、具有平行四边形的一切性质2、菱形的四条边都相等3、菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形性质的应用已知:如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm.求:(1).对角线AC的长度;(2).菱形的面积解:(1)∵四边形ABCD是菱形,=2×△ABD的面积.5102121cmBDDE∴∠AED=900,(2)菱形ABCD的面积=△ABD的面积+△CBD的面积.125132222cmDEADAE∴AC=2AE=2×12=24(cm).AEBD212DBCAE.12012102122cm三、课堂练习(复习巩固)1、菱形的两条对角线长分别是6cm和8cm,则菱形的周长,面积。2、菱形的面积为24cm2,一条对角线的长为6cm,则另一条对角线长为;边长为。3、已知菱形的两个邻角的比是1:5,高是8cm,则菱形的周长为。4、已知菱形的周长为40cm,两对角线的比为3:4,则两对角线的长分别是。例1:如图,菱形ABCD的边长为4cm,∠BAD=2∠ABC。对角线AC、BD相交于点O,求这个菱形的对角线长和面积。ODCBA变式题(1):菱形两条对角线长为6和8,菱形的边长为,面积为。(2):菱形ABCD的面积为96,对角线AC长为16,此菱形的边长为。(3):菱形对角线的平方和等于一边平方的()A.2倍B.3倍C.4倍D.5倍5410C例2:菱形ABCD中,对角线AC、BD相交于点O,E、F分别是AB、AD的中点,求证:OE=OF。FEODCBAABCDEF变式题(1):菱形ABCD,E、F分别ABCD的中点,求证:CE=CF.(2)如果上题中还有CE⊥AB,CF⊥AD,求各内角的度数例3:如果菱形的一个角是1200,那么这个角的顶点向两条对边所引的两条垂线分别平分两边。FEDCBA已知:菱形ABCD,E、F分别为BC、CD上的点,且∠B=∠EAF=60度,若∠BAE=20度。求∠CEF的度数。60°20°40°BADEFC20°60°60°课外练习ABCDEF已知如图,菱形ABCD中,E、F分别是BC、CD上的点,且∠B=∠EAF=60,∠BAE=18,求∠CEF的度数.如图,边长为a的菱形ABCD中,∠DAB=60度,E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a。证明:不论E、F怎样移动,三角形BEF总是正三角形。ABCDEF思考:已知:菱形中ABCD,∠A=72°,请设计三种不同的分法,将菱形ABCD分成四个三角形,使得每一个三角形都是等腰三角形。菱形边对称性角对角线性质面积对边平行四条边都相等中心对称图形轴对称图形对角相等对角线互相垂直对角线互相平分每一条对角线平分一组对角2、(a,b表示两条对角线的长度)abS21用列表形式小结出菱形的性质归纳小结,提炼知识1、底乘以高1个定义2个公式3个特性:有一组邻边相等的平行四边形叫菱形:S菱形=底×高S菱形=对角线乘积的一半:特在“边、对角线、对称性”例1、已知:AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形。ABCDEF123变式训练:把本例中的“DE//AC交AB于E,DF∥AB交AC于F”改成“EF垂直平分AD”,其他条件不变,你能否证明四边形AEDF是菱形?