2018年-2008年江苏高考应用题(共10题)说明:应用题考在17题或18题,是解答题的第三、四两题之一,是中档题,是学生取得优分必须要突破的题型,必须重视。做错的认真订正,并在可能的情况下多练。1.某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP△,要求,AB均在线段MN上,,CD均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形ABCD和CDP△的面积,并确定sin的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.2.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为107cm,容器Ⅱ的两底面对角线EG,11EG的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱1CC上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱1GG上,求l没入水中部分的长度.3.现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111PABCD,下部分的形状是正四棱柱1111ABCDABCD(如图所示),并要求正四棱柱的高1PO的四倍.(1)若16,PO2,ABmm则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当1PO为多少时,仓库的容积最大?4.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12ll,,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到12ll,的距离分别为5千米和40千米,点N到12ll,的距离分别为20千米和2.5千米,以12ll,所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数2ayxb(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式ft,并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.容器Ⅱ容器ⅠGOHFEDCBAO1H1G1F1E1D1C1B1A15.如图:为保护河上古桥,规划建一座新桥,同时设立一个圆形保护区,规划要求,新桥与河岸垂直;保护区的边界为圆心在线段上并与相切的圆,且古桥两端和到该圆上任一点的距离均不少于80,经测量,点位于点正北方向60处,点位于点正东方向170处,(为河岸),。(1)求新桥的长;(2)当多长时,圆形保护区的面积最大?6.如图,游客从某旅游景区的景点A处下山至C处有两种路径。一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为min/50m.在甲出发min2后,乙从A乘缆车到B,在B处停留min1后,再从匀速步行到C.假设缆车匀速直线运动的速度为min/130m,山路AC长为m1260,经测量,1312cosA,53cosC.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?7.如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20ykxkxk表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.8、请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcmOABCBCABMOABCOAmAOmCOmOC4tan3BCOBCOMCBADMNx(千米)y(千米)O(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值。9、某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=,∠ADE=。(1)该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,-最大?10.某地有三家工厂,分别位于矩形ABCD的顶点A,B及CD的中点P处,已知AB=20km,CB=10km,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且A,B与等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,OP,设排污管道的总长为ykm.(Ⅰ)按下列要求写出函数关系式:①设∠BAO=(rad),将y表示成的函数关系式;②设OPx(km),将y表示成xx的函数关系式.(Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.解析如下:1.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP△,要求,AB均在线段MN上,,CD均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形ABCD和CDP△的面积,并确定sin的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.17.【答案】(1);(2)当时,能使甲、乙两种蔬菜的年总产值最大.xxEFABDCCBPOAD1,41π6【解析】(1)连结并延长交于,则,所以.过作于,则,所以,故,,则矩形的面积为,的面积为.过作,分别交圆弧和的延长线于和,则.令,则,.当时,才能作出满足条件的矩形,所以的取值范围是.(2)因为甲、乙两种蔬菜的单位面积年产值之比为,设甲的单位面积的年产值为,乙的单位面积的年产值为,则年总产值为,.设,,则.令,得,当时,,所以为增函数;当时,,所以为减函数,因此,当时,取到最大值.2.(本小题满分16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为107cm,容器Ⅱ的两底面对角线EG,11EG的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱1CC上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱1GG上,求l没入水中部分的长度.POMNHPHMN10OHOOEBCEOEMN∥COE40cosOE40sinECABCD240cos40sin108004sincoscosCDP△1240cos4040sin1600cossincos2NGNMNOEGK10GKKN0GOK01sin40π0,60π2,ABCDsin1,414:34k30kk48004sincoscos31600cossincoskk8000sincoscosk0π2,sincoscosf0π2,222cossinsin2sinsin12sin1sin1f=0fπ60π6,0ffππ,620ffπ6f容器Ⅱ容器ⅠGOHFEDCBAO1H1G1F1E1D1C1B1A1(第18题)【答案】(1)16(2)20【解析】解:(1)由正棱柱的定义,1CC⊥平面ABCD,所以平面11AACC⊥平面ABCD,1CCAC⊥.记玻璃棒的另一端落在1CC上点M处.(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm)(2)如图,O,O1是正棱台的两底面中心.由正棱台的定义,OO1⊥平面EFGH,所以平面E1EGG1⊥平面EFGH,O1O⊥EG.同理,平面E1EGG1⊥平面E1F1G1H1,O1O⊥E1G1.记玻璃棒的另一端落在GG1上点N处.过G作GK⊥E1G,K为垂足,则GK=OO1=32.因为EG=14,E1G1=62,所以KG1=6214242,从而222211243240GGKGGK.设1,,EGGENG∠∠则114sinsin()cos25KGGKGG∠∠.因为2,所以3cos5.在ENG△中,由正弦定理可得4014sinsin,解得7sin25.因为02,所以24cos25.于是42473sinsin()sin()sinco3scossin()5252555NEG∠.记EN与水面的交点为P2,过P2作P2Q2⊥EG,Q2为垂足,则P2Q2⊥平面EFGH,故P2Q2=12,从而EP2=2220sinPNEGQ∠.答:玻璃棒l没入水中部分的长度为20cm.(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm)3.(本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111PABCD,下部分的形状是正四棱柱1111ABCDABCD(如图所示),并要求正四棱柱的高1PO的四倍.(1)若16,PO2,ABmm则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当1PO为多少时,仓库的容积最大?【答案】(1)312(2)123PO4.(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12ll,,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到12ll,的距离分别为5千米和40千米,点N到12ll,的距离分别为20千米和2.5千米,以12ll,所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数2ayxb(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式ft,并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.【答案】(1)1000,0;ab(2)①6249109(),4fttt定义域为[5,20],②min102,()153tft千米(2)①由(1)知,21000yx(520x),则点的坐标为2100