居余马线性代数第三章课后习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第三章课后习题及解答将1,2题中的向量表示成4321,,,的线性组合:1..1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T4T3T21TT2..1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321解:设存在4321,,,kkkk使得44332211kkkk,整理得14321kkkk24321kkkk14321kkkk14321kkkk解得.41,41,41,454321kkkk所以432141414145.设存在4321,,,kkkk使得44332211kkkk,整理得02321kkk,04321kkkk,0342kk,1421kkk.解得.0,1,0,14321kkkk所以31.判断3,4题中的向量组的线性相关性:3..6,3,1,5,2,0,1,1,1T3T2T14..3,0,7,142,1,3,0,)4,2,1,1(T3T2T1,解:3.设存在321,,kkk使得0332211kkk,即065032032132131kkkkkkkk,由0651321101,解得321,,kkk不全为零,故321,,线性相关.4.设存在321,,kkk使得0332211kkk,即0142407203033213212131kkkkkkkkkk可解得321,,kkk不全为零,故321,,线性相关.5.论述单个向量)(naaa,,,21线性相关和线性无关的条件.解:设存在k使得0k,若0,要使0k,当且仅当0k,故,单个向量线性无关的充要条件是0;相反,单个向量)(naaa,,,21线性相关的充要条件是0.6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关.证:设向量组nn,,,,121线性无关,利用反证法,假设存在该向量组的某一部分组)(,,,21niriiir线性相关,则向量组nn,,,,121线性相关,与向量组nn,,,,121线性无关矛盾,所以该命题成立.7.证明:若21,线性无关,则2121,也线性无关.证:方法一,设存在21,kk使得0)()(212211kk,整理得,0)()(221121kkkk,因为21,线性无关,所以002121kkkk,可解得021kk,故2121,线性无关.方法二,因为)(2121,1111,21)(,又因为021111,且21,线性无关,所以向量组2121,的秩为2,故2121,线性无关.8.设有两个向量组s,,,21和,,,,21s其中,13121111kaaaa,3222122ksaaaa,,321ksssssaaaas,,,21是分别在s,,,21的k个分量后任意添加m个分量mjjjbbb,,,21),,2,1(sj所组成的mk维向量,证明:(1)若s,,,21线性无关,则s,,,21线性无关;(2)若s,,,21线性相关,则s,,,21线性相关.证:证法1,(1)设sA,,,21,sB,,,21,因为s,,,21线性无关,所以齐次线性方程0AX只有零解,即,)(sAr且sBr)(,s,,,21线性无关.证法2,因为s,,,21线性无关,所以齐次线性方程0AX只有零解,再增加方程的个数,得0BX,该方程也只有零解,所以s,,,21线性无关.(2)利用反证法可证得,即假设s,,,21线性无关,再由(1)得s,,,21线性无关,与s,,,21线性相关矛盾.9.证明:133221,,线性无关的充分必要条件是321,,线性无关.证:方法1,(133221,,)=(321,,)110011101因为321,,线性无关,且02110011101,可得133221,,的秩为3所以133221,,线性无关.线性无关;反之也成立.方法2,充分性,设321,,线性无关,证明133221,,线性无关.设存在321,,kkk使得0)()()(133322211kkk,整理得,0)()()(332221131kkkkkk因为321,,线性无关,所以000322131kkkkkk,可解得0321kkk,所以133221,,线性无关.必要性,(方法1)设133221,,线性无关,证明321,,线性无关,假设321,,线性相关,则321,,中至少有一向量可由其余两个向量线性表示,不妨设321,可由线性表示,则向量组133221,,可由32,线性表示,且23,所以133221,,线性相关,与133221,,线性无关矛盾,故321,,线性无关.方法2,令133322211,,,设存在321,,kkk使得0332211kkk,由133322211,,1144得)()()(32133212321121,21,21,代入0332211kkk得,0212121321332123211)()()(kkk,即0)()()(332123211321kkkkkkkkk因为321,,线性无关,所以000321321321kkkkkkkkk可解得0321kkk,所以321,,线性无关.10.下列说法是否正确?如正确,证明之;如不正确,举反例:(1)m,,,21)(2m线性无关的充分必要条件是任意两个向量线性无关;解:不正确,必要条件成立,充分条件不成立,例:2维向量空间不在一条直线的3个向量,虽然两两线性无关,但这3个向量线性相关。设111001321,,,321,,两两线性无关,而321,,线性相关.(2)m,,,21)(2m线性相关的充分必要条件是有1m个向量线性相关;解:不正确,充分条件成立,但必要条件不成立,例:设111001321,,,321,,线性相关,而俩321,,两两线性无关.(3)若21,线性相关,21,线性相关,则有不全为零的数21,kk,使得02211kk且02211kk,从而使得0222111)()(kk,故2211,线性相关.解:不正确,因为21,线性相关和21,线性相关,不一定存在同一组不全为零的数21,kk,使得02211kk和02211kk成立;或者说存在两组不全为零的数21,kk和21,tt使得02211kk和02211tt成立.(4).若321,,线性无关,则133221,,线性无关.解:不正确,因为取1,1,1这组常数,使得0133221)()()(,所以133221,,线性相关.(5)若4321,,,线性无关,则14433221,,,线性无关;解:不正确,因为14433221,,,线性相关,由9题,n为奇数个时,线性无关,n为偶数时,线性相关.(6).若n,,,,321线性相关,则113221,,,,nnn线性相关;解:正确,因为n,,,,321线性相关,所以n,,,,321中至少有一向量可由剩余的1n个向量线性表示,则113221,,,,nnn也可由那剩余的1n个向量线性表示,再因为1nn,所以113221,,,,nnn线性相关.11.如果4321,,,线性相关,但其中任意3个向量都线性无关,证明必存在一组全不为零的数4321,,,kkkk,使得044332211kkkk.证:因为4321,,,线性相关,所以存在不全为零的常数4321,,,kkkk,使得044332211kkkk,假设01k,则0443322kkk,得432,,线性相关与题设矛盾.故01k;同样方法可证得432,,kkk都不为零.所以该命题成立.12.若r,,,21线性无关,证明:r,,,,21线性无关的充分必要条件是不能由r,,,21线性表示.证:必要性,假设能由r,,,21,则r,,,,21线性相关与r,,,,21线性无关矛盾,故不能由r,,,21线性表示.充分性,设存在rkkkk,,,,210使得03322110rrkkkkk,若00k,则能由r,,,,321线性表出,矛盾,所以00k,因此,0332211rrkkkk,又因为r,,,21线性无关,所以021rkkk,故,r,,,,21线性无关.13.求下列向量组的秩及其一个极大线性无关组,并将其余向量用极大线性无关组线性表示:(1);)3,1,0,1,7(),22,6,9,4,1(),4,3,2,0,1(),2,9,1,4,6(4321(2))0,2,1,1(,)6,5,1,2(),14,7,0,3(),2,1,3,0(),4,2,1,1(54321;(3).)3,2,1(),0,0,1(),0,1,1(),1,1,1(4321解:(1)TTTT4321,,,=32242163909211404711600000000100005100101所以,向量组的秩为3,421,,为一个极大线性无关组,2135.(2)类似(1),可求得向量组的秩为3,421,,为一个极大线性无关组,且2133,2145.(3)类似(1),可求得向量组的秩为3,321,,为一个极大线性无关组,312435.14.设向量组:).6,5,1,2(),0,2,1,1(,)6,5,1,2(),14,7,0,3(),2,1,3,0(),4,2,1,1(545321(1)证明21,线性无关;(2)求向量组包含21,的极大线性无关组.(1)证:设存在21,kk,使得02111TTkk,求得021

1 / 41
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功