2018年普通高等学校招生全国统一考试1.已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ12.已知a,b,e是平面向量,e是单位向量,若非零向量a与e的夹角为π3,向量b满足b2−4e•b+3=0,则|a−b|的最小值是()A.√3−1B.√3+1C.2D.2−√33.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a11,则()A.a1a3,a2a4B.a1a3,a2a4C.a1a3,a2a4D.a1a3,a2a44.已知λ∈R,函数f(x)={x−4,x≥λx2−4x+3,xλ,当λ=2时,不等式f(x)0的解集是_____________________,若函数f(x)恰有2个零点,则λ的取值范围是________________________5.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________个没有重复数字的四位数(用数字作答)6.已知点P(0,1),椭圆x24+y2=m(m1)上两点A,B满足AP⃗⃗⃗⃗⃗=2PB⃗⃗⃗⃗⃗,则当m=____________________时,点B横坐标的绝对值最大7.(15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上(1)设AB中点为M,证明:PM垂直于y轴(2)若P是半椭圆x2+y24=1(x0)上的动点,求△PAB面积的取值范围8.(15分)已知函数f(x)=√x−lnx(1)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)8−8ln2(2)若a≤3−4ln2,证明:对于任意k0,直线y=kx+a与曲线y=f(x)有唯一公共点2018年普通高等学校招生全国统一考试(江苏卷)9.函数()fx满足(4)()()fxfxxR,且在区间(2,2]上,cos,02,2()1||,20,2xxfxxx-则((15))ff的值为▲.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲.11.若函数32()21()fxxaxaR在(0,)内有且只有一个零点,则()fx在[1,1]上的最大值与最小值的和为▲.12.在平面直角坐标系xOy中,A为直线:2lyx上在第一象限内的点,(5,0)B,以AB为直径的圆C与直线l交于另一点D.若0ABCD,则点A的横坐标为▲.PMBAOyx13.在ABC△中,角,,ABC所对的边分别为,,abc,120ABC,ABC的平分线交AC于点D,且1BD,则4ac的最小值为▲.14.已知集合*{|21,}AxxnnN,*{|2,}nBxxnN.将AB的所有元素从小到大依次排列构成一个数列{}na.记nS为数列{}na的前n项和,则使得112nnSa成立的n的最小值为▲.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP△,要求,AB均在线段MN上,,CD均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形ABCD和CDP△的面积,并确定sin的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy中,椭圆C过点1(3,)2,焦点12(3,0),(3,0)FF,圆O的直径为12FF.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于,AB两点.若OAB△的面积为267,求直线l的方程.19.(本小题满分16分)记(),()fxgx分别为函数(),()fxgx的导函数.若存在0xR,满足00()()fxgx且00()()fxgx,则称0x为函数()fx与()gx的一个“S点”.%网(1)证明:函数()fxx与2()22gxxx不存在“S点”;(2)若函数2()1fxax与()lngxx存在“S点”,求实数a的值;(3)已知函数2()fxxa,e()xbgxx.对任意0a,判断是否存在0b,使函数()fx与()gx在区间(0,)内存在“S点”,并说明理由.20.(本小题满分16分)设{}na是首项为1a,公差为d的等差数列,{}nb是首项为,公比为q的等比数列.(1)设110,1,2abq,若1||nnabb对1,2,3,4n均成立,求d的取值范围;(2)若*110,,(1,2]mabmqN,证明:存在dR,使得1||nnabb对2,3,,1nm均成立,并求的取值范围(用1,,bmq表示).2018年普通高等学校招生全国统一考试(上海卷)8.在平面直角坐标系中,已知点A(-1,0),B(2,0),E,F是y轴上的两个动点,且||=2,则的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{an}的通项公式为an=qⁿ+1(n∈N*),前n项和为Sn。若,则q=____________11.已知常数a0,函数的图像经过点、,若,则a=__________12.已知实数x₁、x₂、y₁、y₂满足:,,,则+的最大值为__________16.设D是含数1的有限实数集,是定义在D上的函数,若的图像绕原点逆时针旋转后与原图像重合,则在以下各项中,的可能取值只能是()(A)(B)(C)(D)020.(本题满分16分,第1小题满分4分,第2小题满分6分,第2小题满分6分,第3小题满分6分)设常数t2,在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线:,l与x轴交于点A,与交于点B,P、Q分别是曲线与线段AB上的动点。(1)用t为表示点B到点F的距离;EFBFAE1Sn1lim2nna222()(2)fxax65pp,15Qq,236pqpq²²1xy₁₁²²1xy₂₂212xxyy₁₂₁12xy∣₁₁∣12xy∣₂₂∣fx()fx()π61f()33233²8yx00xty(≦≦,≧)(2)设t=3,,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在上?若存在,求点P的坐标;若不存在,说明理由。21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{an},若无穷数列{bn}满足:对任意,都有,则称“接近”。(1)设{an}是首项为1,公比为的等比数列,,,判断数列是否与接近,并说明理由;(2)设数列{an}的前四项为:a₁=1,a₂=2,a₃=4,𝑎4=8,{bn}是一个与{an}接近的数列,记集合M={x|x=bi,i=1,2,3,4},求M中元素的个数m;(3)已知{an}是公差为d的等差数列,若存在数列{bn}满足:{bn}与{an}接近,且在b₂-b₁,b₃-b₂,…b201-b200中至少有100个为正数,求d的取值范围。2018年普通高等学校招生全国统一考试(北京卷)(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率为(A)32f(B)322f(C)1252f(D)1272f(7)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线20xmy的距离,当θ,m变化时,d的最大值为(A)1(B)2(C)3(D)4(8)设集合{(,)|1,4,2},Axyxyaxyxay则(A)对任意实数a,(2,1)A(B)对任意实数a,(2,1)A(C)当且仅当a0时,(2,1)A(D)当且仅当32a时,(2,1)A(13)能说明“若f(x)f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.(14)已知椭圆22221(0)xyMabab:,双曲线22221xyNmn:.若双曲线N的两条渐近线与椭圆M的四个交2FQ∣∣*nN1||nnba{}{}nnba与2111nnba*nN{}nb{}na点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.(18)(本小题13分)设函数()fx=[2(41)43axaxa]ex.(Ⅰ)若曲线y=f(x)在点(1,(1)f)处的切线与x轴平行,求a;(Ⅱ)若()fx在x=2处取得极小值,求a的取值范围.(19)(本小题14分)已知抛物线C:2y=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,QMQO,QNQO,求证:11为定值.(20)(本小题14分)设n为正整数,集合A=12{|(,,,),{0,1},1,2,,}nnttttkn.对于集合A中的任意元素12(,,,)nxxx和12(,,,)nyyy,记M(,)=111122221[(||)(||)(||)]2nnnnxyxyxyxyxyxy.(Ⅰ)当n=3时,若(1,1,0),(0,1,1),求M(,)和M(,)的值;(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素,,当,相同时,M(,)是奇数;当,不同时,M(,)是偶数.求集合B中元素个数的最大值;(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素,,M(,)=0.写出一个集合B,使其元素个数最多,并说明理由.2018年普通高等学校招生全国统一考试(北京卷)w(7)在平面坐标系中,,,,ABCDEFGH是圆221xy上的四段弧(如图),点P在其中一段上,角以O𝑥为始边,OP为终边,若tancossin,则P所在的圆弧是(A)AB(B)CD(C)EF(D)GH(8)设集合{(,)|1,4,2},Axyxyaxyxay则(A)对任意实数a,(2,1)A(B)对任意实数a,(2,1)A(C)当且仅当a0时,(2,1)A(D)当且仅当32a时,(2,1)A(14)若ABC△的面积为2223()4acb,且∠C为钝角,则∠B=_________;ca的取值范围是_________.(19)(本小题13分)设函数2()[(31)32]exfxaxaxa.(Ⅰ)若曲线()yfx在点(2,(2))f处的切线斜率为0,求a;(Ⅱ)若()fx在1x处取得极小值,求a的取值范围.(20)(本小题14分)已知椭圆2222:1(0)xyMabab