一、贝叶斯决策(Bayesdecisiontheory)【例】某企业设计出一种新产品,有两种方案可供选择:—是进行批量生产,二是出售专利。这种新产品投放市场,估计有3种可能:畅销、中等、滞销,这3种情况发生的可能性依次估计为:0.2,0.5和0.3。方案在各种情况下的利润及期望利润如下表。企业可以以1000元的成本委托专业市场调查机构调查该产品销售前景。若实际市场状况为畅销,则调查结果为畅销、中等和滞销的概率分别为0.9、0.06和0.04;若实际市场状况为中等,则调查结果为畅销、中等和滞销的概率分别为0.05、0.9和0.05;若实际市场状况为滞销,则调查结果为畅销、中等和滞销的概率分别为0.04、0.06和0.9。问:企业是否委托专业市场调查机构进行调查?解:1.验前分析:记方案d1为批量生产,方案d2为出售专利E(d1)=0.2*80+0.5*20+0.3*(-5)=24.5(万元)E(d2)=40*0.2+7*0.5+1*0.3=11.8(万元)记验前分析的最大期望收益为E1,则E1=max{E(d1),E(d2)}=24.5(万元)因此验前分析后的决策为:批量生产E1不作市场调查的期望收益2.预验分析:(1)设调查机构调查的结果畅销、中等、滞销分别用H1、H2、H3表示由全概率公式P(H1)=0.9*0.2+0.06*0.5+0.04*0.3=0.232P(H2)=0.05*0.2+0.9*0.5+0.05*0.3=0.475P(H3)=0.04*0.2+0.06*0.5+0.9*0.3=0.308(2)由贝叶斯公式有P(Ɵ1|H1)=0.9*0.2/0.232=0.776P(Ɵ2|H1)=0.06*0.5/0.232=0.129P(Ɵ3|H1)=0.04*0.3/0.232=0.052P(Ɵ1|H2)=0.05*0.2/0.475=0.021P(Ɵ2|H2)=0.9*0.5/0.475=0.947P(Ɵ3|H2)=0.05*0.3/0.475=0.032P(Ɵ1|H3)=0.04*0.2/0.308=0.026P(Ɵ2|H3)=0.06*0.5/0.308=0.097P(Ɵ3|H3)=0.9*0.3/0.308=0.877(3)用后验分布代替先验分布,计算各方案的期望收益值a)当市场调查结果为畅销时E(d1|H1)=80*P(Ɵ1|H1)+20*P(Ɵ2|H1)+(-5)*P(Ɵ3|H1)=80*0.776+20*0.129+(-5)*0.052=64.4(万元)E(d2|H1)=40*P(Ɵ1|H1)+7*P(Ɵ2|H1)+1*P(Ɵ3|H1)=40*0.776+7*0.129+1*0.052=31.995(万元)因此,当市场调查畅销时,最优方案是d1,即批量生产b)当市场调查结果为中等时E(d1|H2)=80*P(Ɵ1|H2)+20*P(Ɵ2|H2)+(-5)*P(Ɵ3|H2)=20.46(万元)E(d2|H2)=40*P(Ɵ1|H2)+7*P(Ɵ2|H2)+1*P(Ɵ3|H2)=40*0.021+7*0.947+1*0.032=7.501(万元)所以市场调查为中等时,最优方案是:d1,即批量生产c)当市场调查结果为滞销时E(d1|H3)=80*P(Ɵ1|H3)+20*P(Ɵ2|H3)+(-5)*P(Ɵ3|H3)=80*0.026+20*0.097+(-5)*0.877=-0.365(万元)E(d2|H3)=40*P(Ɵ1|H3)+7*P(Ɵ2|H3)+1*P(Ɵ3|H3)=40*0.026+7*0.097+1*0.877=2.596(万元)因此市场调查为滞销时,最优方案是:d2,即出售专利(4)通过调查,该企业可获得的收益期望值为E2=E(d1|H1)*P(H1)+E(d1|H2)*P(H2)+E(d2|H3)*P(H3)=64.4*0.232+20.46*0.475+2.596*0.308=25.46(万元)通过调查,该企业收益期望值能增加E2-E1=25.46-24.5=0.96(万元)因此,在调查费用不超过0.96万元的情况下,应进行市场调查3.验后分析(1)本题中调查费用10009600,所以应该进行市场调查(2)当市场调查结果为畅销时,选择方案1,即批量生产(3)当市场调查结果为中等时时,选择方案1,即批量生产(4)当市场调查结果为滞销时,选择方案2,即出售专利