294No.4Vol.2920158JournalofChemicalEngineeringofChineseUniversitiesAug.20151003-9015(2015)04-0985-071,2,1,2,2,2(1.,510080;2.,210096)pHFe3+F−TL-02X51TQ026.5ADOI10.3969/j.issn.1003-9015.2015.04.029ExperimentalInvestigationonCrystallinePropertiesofLimestone-GypsumDesulphurizationSlurryLIUYa-ming1,PANDan-ping2,XUQisheng1,GUOYan-peng2,HUANGRong-ting2,YANGLin-jun2(1.ElectricPowerResearchInstituteofGuangdongPowerGridCompany,Guangzhou510080,China;2.KeyLaboratoryofEnergyThermalConversionandControlofMinistryofEducation,SoutheastUniversity,Nanjing210096,China)Abstract:Basedontheproblemthatthemainfineparticlessmuggledafterlimestone-gypsumfluegasdesulphurizationarefromevaporationandentrainmentofdesulphurizationslurry,investigationoneffectsofdesulphurizationoperatingparameters,impuritiesandadditivesoncrystallinepropertiesoflimestone-gypsumdesulphurizationslurrywascarriedout.Thentherelationbetweenfineparticleconcentrationinfluegasandcrystalsizeinslurrywasfound.Astheresultsshow,thatthemaincrystalsindesulphurizationslurryaregypsum,andtoohighortoolowtemperatureisunfavourablletocrystalgrowth.SmallerlimestoneandhigherpHvalueaswellasaddingFe3+andF−intodesulphurizationslurrycanpreventcrystalgrowandpromoteformationoffinecrystals.ButaddingdesulphurizationsynergistTL-02canpreventformationoffinecrystals.Fineparticleconcentrationinfluegasisrelatedtocrystalsizeindesulphurizationslurry.Withcrystalsizeindesulphurizationslurryincreases,fineparticleconcentrationinfluegasdecreasesandsizeincreases.Keywords:limestone-gypsummethod;desulphurization;gypsum;crystallization;fineparticles1“”“”[1,2][3,4]2015-03-112015-07-08K-GD2013-055(2013AA065004)(21276049)(2013CB228505)(1979-)E-mail:ylj@seu.edu.cn98620158SO2[5]pHBarbier[6][7~12]Hansen[13]pHSO2[14~16]21SO2SO2SO2PCpHBT—9300STDekati(ElectricalLowPressureImpactorELPI)SO2ECOMJ2KNAXSD8ADVANCEXLEO1530VPPerKinElmerPyris1DSC33.13.1.122(a)X(XRD)2(b)(TG)2(c)XRD10~30μm1Fig.1Schematicdiagramofexperimentalsystem1.airblower2.SO23.mixer4.heater5.gasanalyzer6.pump7.limestoneslurrytank8.electric-heartedthermostaticwaterbath9.crystallizationtank10.spraytowerSimulatedfluegascompoundingsystemDesulfurizationslurrypreparingandtransportingsystemDischarge105341266768912949873.1.235455232.5μmSO2CaCO3CaSO4CaSO4453.1.3325600487.3%93.1%SO2SO2Ca2+SO42-3.1.4pH5pH5.56.5030609004000800012000Intensity11110510152025050010001500Time/minFurnacetemperature/°CTG/mg2016128(a)imageofXRD(1:CaSO4)(b)imageofTG(c)imageofSEM(×500)2Fig.2Propertiesofcrystalinthedesulfurizationslurryafterthesystemrunningstably(FumevolumeQ=15m3⋅h−1inlettemperatureofgasTG=130bathingtemperatureTL=45CSO2=1000ppmL/G=20L⋅m−3pH=5.5)2θ110100036Size/μmDiff/%3Fig.3Effectsoftemperatureongypsumsizedistribution—□—35—○—45—▲—55110100036Diff/%Size/μm4Fig.4Effectsoflimestonesizeongypsumsizedistribution—○—325mesh—▲—600mesh00988pHCa2+3.1.5Fe73.1.6F−F−Diff/%(a)i6.5pHpHe3+70.02−F−5pHFig.5Effectsi1036—○—pH=—▲—pH=0imageofSEM(×5FpHpH6.5Fe3+mol/LFe3+7(b)Fe3+tsofpHvalueonizedistribution10Size/μm=5.5=6.5500)7FFig.7EffectsofFFe8gypsum100e3+Fe3+oncrystalmopHSO2Ca2+e3+Fe3+(1μm(F−(orphologyofgyps5.5(SEM)2(c))6Fig.6Effe036Diff/%———0(b)imageofSEMumSO42−7(a)Fe3+fectsofdifferentcogypsumsizedis1Size/μ—□—c=0.01mol⋅—○—c=0.02mol⋅L▲—c=02(×6000)SOpH6Fe3oncentrationofFestribution101μmL−1L−120158SO2O42−3+-e3+on100293.1.727.9513.211036Diff/%Fi04993μm5.06%03.1.(a)im18ig.8Effectsofdigypsum—□—c=0—○—c=0.0—▲—c=0.00Fe3+2.51mageofSEM(×50Fig10Size/μmF−ifferentconcentratmsizedistribution01mol⋅L−102mol⋅L−1TL-0290.1%5μm[1700)10.10ImageofSE010tionofF−onF−292.5%7]EMafteraddingde00%20.17μ1.09%SEM9.7×107/c(SEMesulphurizationsy036Diff/%9Fig.9—○——▲—a0Al3+mMm38.(b)imageofSEMynergist1SizeEffectsofdesulfgypsumsizenodesulfurizationaddingdesulfuriza125×107/cm3(×1500)10/μmfurizationsynergisdistributionnsynergistationsynergist9893100ston990201584(1)10~30μm(2)pHFe3+F−TL-02(3)[1]LIChun-yu().Analysisforgypsumrainofwetfluegasdesulfurizationsystem(“”)[J].EnergyEngineering(),2012,1:43-47.[2]FUYu(),HEJin-qi().Discussionaboutsolutionofgypsumrainwhenwetdesulphurizationusedforpowerplant(“”)[J].HeilongjiangElectricPower(),2009,5:374-376.[3]WANGHui(),SONGQiang(),YAOQiang(),etal.Experimentalstudyonremovaleffectofwetfluegasdesulfurizationsystemonfineparticlesfromacoal-firedpowerplant()[J].ProceedingsoftheChineseSocietyforElectricalEngineering(),2008,28(5):1-7.[4]YANJin-pei(),YANGLin-jun(),BAOJing-jing().Impactpropertyonfineparticlesfromcoalcombustioninwetfluegasdesulfurizationprocess()[J].JournalofSoutheastUniversity(NaturalScienceEdition)(()),2011,2:387-392.[5]SimionDragan,AlexandruOzunu.Characterizationofcalciumcarbonatesusedinwetfluegasdesulphurizationprocesses[J].0.010.111002040Percentage/%Dp/μm(b)sizedistribution12Fig.12Propertiesoffineparticlesinfluegaswithdifferentdesulfurizationslurries—■—D50=12.00μm—○—D50=23.06μm0100200300400500Time/sD50=12.00μmD50=23.06μm10.49.68.88.0Numberconcentration×107/cm3(a)numberconcentrationDp/μm——D50=23.06μm—▲—D50=12.00μm110100036Diff/%Size/μm11Fig.11Sizedistributionindifferentdesulfurizationslurries02949