2-3[1].正交子空间

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

矩阵论电子教程哈尔滨工程大学理学院应用数学系DepartmentofMathematicsDepartmentofMathematics内积空间第二章DepartmentofMathematics一,子空间的正交1,定义:§2.3正交子空间1)设是欧氏(酉)空间V中的子空间,如果对恒有(,)0,则称向量与子空间正交,记作1.V1V,V1,V1V2)与是欧氏(酉)空间V中的两个子空间,如果对1V2V则称子空间与为正交的,记作2V1V12.VV12,,VV恒有(,)0DepartmentofMathematics①当且仅当中每个向量都与正交.12VV1V2V②1212{0}.VVVV③当且时,必有1V1V0.12(,)00.VV说明:④若,则:2121VVVVdimdim)dim(12VVDepartmentofMathematics2,定理:(1),设酉(欧氏)空间,为标准正交基,则:LV],,,[21nn,,,21njijiLLji,,2,1,,,)()((2),设,则:)(),(snsnmnmnRCBRCA()()0HRARBBA证明:设:],,,[,],,,[2121smbbbBaaaA()()(),()(,)01,2,,;1,2,,ijiijHjRARBaRAbRBabbaimjs0HBADepartmentofMathematics反之,0(,)01,2,,;1,2,,jiiHHjBAbaabimjs)(),(BRyARx令:C,,,212211mmmkkkakakakxCtttbtbtbtysss,,,212211则有:0),(),(11jijmisjibatkyx即:)()(BRARDepartmentofMathematics二、正交子空间的和1.正交补的定义:如果欧氏空间V的子空间满足并且12,VV12,VV则称为的正交补子空间.2V1V12,VVV2112VVorVV记作2,定理:,()()()()mnHmHACthenRANACandRANA证明:dim()dim()dim()HHHNAmRAmrankAmrankAmRADepartmentofMathematics证明:当时,V就是的唯一正交补.1{0}V1V当时,也是有限维欧氏空间.1V1{0}V12,,,,m取的一组正交基1V2.n维欧氏(酉)空间V的每个子空间V1都有唯一正交补V2=V1┴,使得V=V1V2.由定理,它可扩充成V的一组正交基121,,,,,,,mmnDepartmentofMathematics记子空间12,,.mnLV12.VVV显然,又对11221,mmxxxV112,mmnnxxV1111(,)(,)(,)0mnmniijjijijijmijmxxxx12.VV即为的正交补.2V1V12.VVV且,DepartmentofMathematics再证唯一性.设是的正交补,则23,VV1V1213VVVVV131,,1131(,)(,)由此可得10,23.VV对由上式知2,V13VV131133,,VV即有又1213,VVVV011(,)1131(,)(,)从而有3V即有同理可证32,VV23.VV唯一性得证.DepartmentofMathematics②维欧氏空间V的子空间W满足:n①子空间W的正交补记为即.Wi)()WWii)dimdimdimWWVniii)WWV注:ⅳ)W的正交补必是W的余子空间.W但一般地,子空间W的余子空间未必是其正交补.WVWDepartmentofMathematics例:设11212(,),[1,1,0],[0,1,1]TTWL=312RWW求W1的正交补空间W2使得解化为的正交基3R,将用施密特正交化方法3[1,0,0]T123,,将扩充为的基,其中取12,123,,3RDepartmentofMathematics11(1,1,0)T2122111(,)(,)313233121122(,)(,)(,)(,)11(,,1)22T111(,,)333T112213(,),()WLWWL则DepartmentofMathematics定理:设W1,W2都是酉(欧氏)空间V的子空间,则12121212(1)()(2)()DepartmentofMathematicsnV定义:设是一个维酉(正交)空间,是的一个线性变换,如果对任意的都有VTTyx,),())(),((yxyTxT则称是的一个酉(正交)变换。VT1.酉(正交)变换的定义§2.4酉(正交)变换、正交投影一,酉变换与正交变换DepartmentofMathematics定理1:酉(正交)变换是线性变换定理2:设是一个维酉(正交)空间,是的一个线性变换,那么下列陈述等价:(1)是酉(正交)变换;(2)(3)将的标准正交基底变成标准正交基底;(4)酉(正交)变换在标准正交基下的矩阵表示为酉(正交)矩阵。推论:设为阶酉(正交)矩阵,则为上的酉(正交)变换VVAn)(,)(:nnRCxAxxTT)(nnRCTTVxxxT,)(nVDepartmentofMathematics

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功