数列证明题型总结(教师版)附答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1/18一、解答题:1.在数列{}an中,a1=1,an+1=2an+2n.(Ⅰ)设bn=an2n-1,证明:数列{}bn是等差数列;(Ⅱ)求数列{}an的前n项的和Sn.【答案】(Ⅰ)因为bn+1-bn=an+12n-an2n-1=an+1-2an2n=2n2n=1所以数列{bn}为等差数列(Ⅱ)因为bn=b1+(n-1)×1=n所以an=n·2n-1所以Sn=1×20+2×21+…+n×2n-12Sn=1×21+2×22+…+n×2n两式相减得Sn=(n-1)·2n+12.在数列{an}中,a1=12,an+1=12an+12n+1.(Ⅰ)设bn=2nan,证明:数列{bn}是等差数列;(Ⅱ)求数列{an}的前n项和Sn.【答案】(Ⅰ)由an+1=12an+12n+1,得2n+1an+1=2nan+1bn+1=bn+1,则{bn}是首项b1=1,公差为1的等差数列.故bn=n,an=n2n.(Ⅱ)Sn=1×12+2×122+3×123+…+(n-1)×12n-1+n×12n12Sn=1×122+2×123+3×124+…+(n-1)×12n+n×12n+1两式相减,得:12Sn=12+122+123+…+12n-n2n+1=12(1-12n)1-12-n2n+1=1-12n-n2n+12/18Sn=2-12n-1-n2n3.数列{an}的各项均为正数,前n项和为Sn,且满足4Sn=(an+1)2(n∈N*).(Ⅰ)证明:数列{an}是等差数列,并求出其通项公式an;(Ⅱ)设bn=an+2an(n∈N*),求数列{bn}的前n项和Tn.【答案】(Ⅰ)n=1时,4a1=(a1+1)2⇒a21-2a1+1=0,即a1=1n≥2时,4an=4Sn-4Sn-1=(an+1)2-(an-1+1)2=a2n-a2n-1+2an-2an-1⇒a2n-a2n-1-2an-2an-1=0⇒(an+an-1)[(an-an-1)-2]=0∵an0∴an-an-1=2故数列{an}是首项为a1=1,公差为d=2的等差数列,且an=2n-1(n∈N*)(Ⅱ)由(Ⅰ)知bn=an+2an=(2n-1)+22n-1∴Tn=b1+b2+…+bn=(1+21)+(3+23)+…+[(2n-1)+22n-1]=[1+3+…+(2n-1)]+(21+23+…+22n-1)=n2+2(1-22n)1-4=22n+13+n2-23=22n+1+3n2-234.数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=an+1(n∈N*).(Ⅰ)证明:数列{an}是等差数列,并求出其通项公式an;(Ⅱ)设bn=an·2n(n∈N*),求数列{bn}的前n项和Tn.【答案】(Ⅰ)由2Sn=an+1(n∈N*)可以得到4Sn=(an+1)2(n∈N*)n=1时,4a1=(a1+1)2⇒a21-2a1+1=0,即a1=1n≥2时,4an=4Sn-4Sn-1=(an+1)2-(an-1+1)2=a2n-a2n-1+2an-2an-1⇒a2n-a2n-1-2an-2an-1=0⇒(an+an-1)[(an-an-1)-2]=0∵an0∴an-an-1=2故数列{an}是首项为a1=1,公差为d=2的等差数列,且an=2n-1(n∈N*)3/18(Ⅱ)由(Ⅰ)知bn=an·2n=(2n-1)·2n∴Tn=(1·21)+(3·22)+…+[(2n-3)·2n-1]+[(2n-1)·2n]则2Tn=(1·22)+(3·23)+…+[(2n-3)·2n]+[(2n-1)·2n+1]两式相减得:-Tn=(1·21)+(2·22)+…+(2·2n)-[(2n-1)·2n+1]=2·2(1-2n)1-2-2-[(2n-1)·2n+1]=(3-2n)·2n+1-6∴Tn=(2n-3)·2n+1+6(或Tn=(4n-6)·2n+6)5.已知数列{an},其前n项和为Sn=32n2+72n(n∈N*).(Ⅰ)求a1,a2;(Ⅱ)求数列{an}的通项公式,并证明数列{an}是等差数列;(Ⅲ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和Tn.【答案】(Ⅰ)a1=S1=5,a1+a2=S2=32×22+72×2=13,解得a2=8.(Ⅱ)当n≥2时,an=Sn-Sn-1=32[n2-(n-1)2]+72[n-(n-1)]=32(2n-1)+72=3n+2.又a1=5满足an=3n+2,∴an=3n+2(n∈N*).∵an-an-1=3n+2-[3(n-1)+2]=3(n≥2,n∈N*),∴数列{an}是以5为首项,3为公差的等差数列.(Ⅲ)由已知得bn=2an(n∈N*),∵bn+1bn=2nn+12an=2an+1-an=23=8(n∈N*),4/18又b1=2a1=32,∴数列{bn}是以32为首项,8为公比的等比数列.∴Tn=32(1-8n)1-8=327(8n-1).6.已知函数f(x)=2xx+2,数列{an}满足:a1=43,an+1=f(an).(Ⅰ)求证:数列1an为等差数列,并求数列{an}的通项公式;(Ⅱ)记Sn=a1a2+a2a3+…+anan+1,求证:Sn83.【答案】证明:(Ⅰ)∵an+1=f(an)=2anan+2,∴1an+1=1an+12,即1an+1-1an=12,则1an成等差数列,所以1an=1a1+(n-1)×12=34+(n-1)×12=2n+14,则an=42n+1.(Ⅱ)∵anan+1=42n+1·42n+3=812n+1-12n+3,∴Sn=a1a2+a2a3+…+anan+1=813-15+15-17+…+12n+1-12n+3=813-12n+383.7.已知数列{an}的前三项依次为2,8,24,且{an-2an-1}是等比数列.(Ⅰ)证明an2n是等差数列;(Ⅱ)试求数列{an}的前n项和Sn的公式.【答案】(Ⅰ)∵a2-2a1=4,a3-2a2=8,∴{an-2an-1}是以2为公比的等比数列.∴an-2an-1=4×2n-2=2n.等式两边同除以2n,得an2n-an-12n-1=1,∴an2n是等差数列.(Ⅱ)根据(Ⅰ)可知an2n=a12+(n-1)×1=n,∴an=n·2n.Sn=1×2+2×22+3×23+…+n·2n,'①2Sn=1×22+2×23+…+(n-1)·2n+n·2n+1.'②①-②得:5/18-Sn=2+22+23+…+2n-n·2n+1=2(1-2n)1-2-n·2n+1=2n+1-2-n·2n+1,∴Sn=(n-1)·2n+1+2.8.已知数列{an}的各项为正数,前n项和为Sn,且满足:Sn=12an+1an(n∈N*).(Ⅰ)证明:数列{S2n}是等差数列;(Ⅱ)设Tn=12S21+122S22+123S23+…+12nS2n,求Tn.【答案】(Ⅰ)证明:当n=1时,a1=S1,又Sn=12an+1an(n∈N*),∴S1=12S1+1S1,解得S1=1.当n≥2时,an=Sn-Sn-1,∴Sn=12Sn-Sn-1+1Sn-Sn-1,即Sn+Sn-1=1Sn-Sn-1,化简得S2n-S2n-1=1,{S2n}是以S21=1为首项,1为公差的等差数列.(Ⅱ)由(Ⅰ)知S2n=n,Tn=12S21+122S22+…+12nS2n,即Tn=1·12+2·122+…+(n-1)12n-1+n·12n.'①①×12得12Tn=1·122+…+(n-1)12n+n·12n+1.'②①-②得12Tn=12+122+…+12n-n·12n+1=121-12n1-12-n·12n+1=1-12n-n·12n+1=1-n+22n+1,∴Tn=2-n+22n.9.数列{an}满足a1=1,an+1·1a2n+4=1(n∈N*),记Sn=a21+a22+…+a2n.(Ⅰ)证明:1a2n是等差数列;6/18(Ⅱ)对任意的n∈N*,如果S2n+1-Sn≤m30恒成立,求正整数m的最小值.【答案】(Ⅰ)证明:1a2n+1-1a2n=4⇒1a2n=1a21+(n-1)×4⇒1a2n=4n-3,即1a2n是等差数列.(Ⅱ)令g(n)=S2n+1-Sn=14n+1+14n+5+…+18n+1.∵g(n+1)-g(n)0,∴g(n)在n∈N*上单调递减,∴[g(n)]max=g(1)=1445.∴1445≤m30恒成立⇒m≥283,又∵m∈N,∴正整数m的最小值为10.10.已知数列{an}是首项a1=133,公比为133的等比数列,设bn+15log3an=t,常数t∈N*.(Ⅰ)求证:{bn}为等差数列;(Ⅱ)设数列{cn}满足cn=anbn,是否存在正整数k,使ck+1,ck,ck+2成等比数列?若存在,求k,t的值;若不存在,请说明理由.【答案】(Ⅰ)证明:an=3-n3,bn+1-bn=-15log3an+1an=5,∴{bn}是首项为b1=t+5,公差为5的等差数列.(Ⅱ)cn=(5n+t)·3-n3,令5n+t=x,则cn=x·-n3,cn+1=(x+5)·3-n+13,cn+2=(x+10)·3-n+23,若c2k=cn+1cn+2,则(x·3-n3)2=(x+5)·3-n+13·(x+10)·3-n+23,化简得2x2-15x-50=0,解得x=10或-52(舍),进而求得n=1,t=5,综上,存在n=1,t=5适合题意.11.在数列{an}中,a1=1,an+1=2an+2n+1.(Ⅰ)设bn=an+1-an+2,(n∈N*),证明:数列{bn}是等比数列;(Ⅱ)求数列{an}的通项an.7/18【答案】(Ⅰ)由已知an+1=2an+2n+1①得an+2=2an+1+2n+3②②-①,得an+2-an+1=2an+1-2an+2设an+2-an+1+c=2(an+1-an+c).展开与上式对比,得c=2因此,有an+2-an+1+2=2(an+1-an+2)由bn=an+1-an+2,得bn+1=2bn,由a1=1,a2=2a1+3=5,得b1=a2-a1+2=6,故数列{bn}是首项为6,公比为2的等比数列(Ⅱ)由(Ⅰ)知,bn=6×2n-1=3×2n则an+1-an=bn-2=3×2n-2,所以an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+(3×21-2)+(3×22-2)+…+(3×2n-1-2)=1+3(2+22+23+…+2n-1)-2(n-1)an=3×2n-2n-3,当n=1时,a1=3×21-2×1-3=6-5=1,故a1也满足上式故数列{an}的通项为an=3×2n-2n-3(n∈N*).12.在数列{an}中,a1=16,an=12an-1+12×13n(n∈N*且n≥2).(Ⅰ)证明:{an+13n}是等比数列;(Ⅱ)求数列{an}的通项公式;(Ⅲ)设Sn为数列{}an的前n项和,求证Sn12.【答案】(Ⅰ)由已知,得an+1+13n+1an+13n=(12an+12·13n+1)+13n+1an+13n=12∴an+13n是等比数列.(Ⅱ)设An=an+13n,则A1=a1+1=16+13=12,且q=12则An=(12)n,8/18∴an+13n=12n,可得an=12n-13n(Ⅲ)Sn=(121-131)+(122-132)+…+(12n-13n)=12(1-12n)1-12-13(1-13n)1-13=12-12n+12·13n=12-2·3n-2n2·6n1213.已知数列{an}满足a1=2,an+1=2an-n+1(n∈N*).(Ⅰ)证明:数列{an-n}是等比数列,并求出数列{an}的通项公式;(Ⅱ)数列{bn}满足:bn=n2an-2n(n∈N*),求数列{bn}的前n项和Sn.【答案】(Ⅰ)证法一:由an+1=2an-n+1可得an+

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功