1电子设计基础II温度传感器设计报告组员:肖勃2011112158郭鹏2011148116贾永天2011109101完成日期:2013-4-202一、设计要求图一温度传感器基本结构温度传感器是一种依靠被测物与热元件和温度之间的关系,来达到测量目的的,因此光电传感器的热源扮演着很重要的角色,温度传感器的电源要是一个恒温电源,电源稳定性的设计至关重要,电源的稳定性直接影响到测量的准确性。二、工作原理温度传感器DS18B20从设备环境的不同位置采集温度,单片机AT89S51获取采集的温度值,经处理后得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。当采集的温度经处理后超过设定温度的上限时,单片机通过三极管驱动继电器开启降温设备(压缩制冷器),当采集的温度经处理后低于设定温度的下时,单片机通过三极管驱动继电器开启升温设备(加热器)。当由于环境温度变化太剧烈或由于加热或降温设备出现故障,或者温度传感头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候,单片机通过三极管驱动扬声器发出警笛声。系统中将通过串口通讯连接PC机存储温度变化时的历史数据,以便观察整个温度的控制过程及监控温度的变化全过程。三、方案设计采用热电偶温差电路测温,温度检测部分可以使用低温热偶,热电偶由两个焊接在一起的异金属导线所组成(热电偶的构成如图3.1),热电偶产生的热电势由两种金属的接触电势和单一导体的温差电势组成。通过将参考结点保持在已知温度并测量该电压,便可推断出检测结点的温度。数据采集部分则使用带有A/D通道的单片机,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。热电偶的优点是工作温度范围非常宽,且体积小,但是它们也存在着输出电压小、容易遭受来自导线环路的噪声影响以及漂移较高的缺点,并且这种设计需要用到A/D转换电路,感温电路比较麻烦。图二热电偶电路图系统主要包括对A/D0809的数据采集,自动手动工作方式检测,温度的显示等,这几项功能的信号通过输入输出电路经单片机处理。此外还有复位电路,晶振电路,启动电路等。故现场输入硬件有手动复位键、A/D转换芯片,处理芯片为51芯片,执行机构有4位数码管、报警器等。系统框图如图4-2所示:测量头热学系统电子测量电路热元件被测量热信号电参量信号可用信号热源3图三热电偶温差电路测温系统框图五、单元电路的设计和元器件的选择5.1微控制器模块AT89S51是一个低功耗,高性能CMOS8位单片机,片内含8kBytesISP(In-systemprogrammable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISPFlash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。AT89S51具有如下特点:40个引脚,4kBytesFlash片内程序存储器,128bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。由于系统控制方案简单,数据量也不大,考虑到电路的简单和成本等因素,因此在本设计中选用ATMEL公司的AT89S51单片机作为主控芯片。主控模块采用单片机最小系统是由于AT89S51芯片内含有4kB的E2PROM,无需外扩存储器,电路简单可靠,其时钟频率为0~24MHz,并且价格低廉,批量价在10元以内。主要特性如下1、与MCS-51兼容2、4K字节可编程闪烁存储器3、寿命:1000写/擦循环4、数据保留时间:10年5、全静态工作:0Hz-24Hz46、三级程序存储器锁定7、128*8位内部RAM8、32可编程I/O线9、两个16位定时器/计数器10、5个中断源11、可编程串行通道12、低功耗的闲置和掉电模式13、片内振荡器和时钟电路AT89S51单片机引脚图5.2温度采集模块DS18B20是DALLAS公司生产的一线式数字温度传感器,它具有微型化、低功耗、高性能抗干扰能力、强易配处理器等优点,特别适合用于构成多点温度测控系统,可直接将温度转化成串行数字信号(按9位二进制数字)给单片机处理,且在同一总线上可以挂接多个传感器芯片,它具有三引脚TO-92小体积封装形式,温度测量范围0~100℃,可编程为9~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出,其工作电源既可在远端引入,业可采用寄生电源方式产生,多个DS18B20可以并联到三根或者两根线上,CPU只需一根端口线就能与多个DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。从而可以看出DS18B20可以非常方便的被用于远距离多点温度检测系统。综上,在本系统中我采用温度芯片DS18B20测量温度。该芯片的物理化学性很稳定,它能用做工业测温元件,且此元件线形较好。在0—100摄氏度时,最大线形偏差小于1摄氏度。该芯片直接向单片机传输数字信号,便于单片机处理及控制。图四温度芯片DS18B20DS18B20最大的特点是单总线数据传输方式,DS18B20的数据I/O均由同一条线来完成。DS18B20的电源供电方式有2种:外部供电方式和寄生电源方式。工作于寄生电源方式时,VDD和GND均接地,他在需要远程温度探测和空间受限的场合特别有用,原理是当1Wire总线的信号线DQ为高电平时,窃取信号能量给DS18B20供电,同时一部分能量给内部电容充电,当DQ为低电平时释放能量为DS18B20供电。但寄生电源方式需要强上拉电路,软件控制变得复杂(特别是在完成温度转换和拷贝数据到E2PROM时),同时芯片的性能也有所降低。外部电源供电方式是DS18B20最佳的工作方式,工作稳定可靠,抗干扰能力强,而且电路也比较简单,可以开发出稳定可靠的多点温度监控系统。因此本设计采用外部供电方式。如下图所示:5温度传感器DS18B20的测量范围为-55℃~+125℃,在-10℃~+85℃时精度为±0.5℃。因为本设计只用于测量环境温度,所以只显示0℃~+85℃。5.3报警模块本设计采软件处理报警,利用有源蜂鸣器进行报警输出,采用直流供电。当所测温度超过获低于所预设的温度时,数据口相应拉高电平,报警输出。(也可采用发光二级管报警电路,如过需要报警,则只需将相应位置1,当参数判断完毕后,再看报警模型单元ALARM的内容是否与预设一样,如不一样,则发光报警)报警电路硬件连接见图5-3图5-3蜂鸣器电路连接图5.4温度显示模块本设计显示电路采用两位共阳极LED数码管来显示测量得到的温度值。LED数码管能在低电压下工作,而且体积小、重量轻、使用寿命长,因次本设计选用此数码管作为显示器件。一个LED数码管只能显示一位的字符,如果字符位数不止一位,可以用几个数码管组成,但要控制多位的显示电路需要有字段控制和字位控制,字段控制是指控制所要显示的字符是什么,控制电路应将字符的七段码通过输出口连接到LED的a~g引脚,是某些段点亮,某些段处于熄灭状态。字位控制是指控制在多位显示器中,哪几位发光或那几位不发光,字位控制则需要通过字位码作用于LED数码管的公共引脚,是某一位或某几位的数码管可以发光。数码管显示电路分为动态显示和静态显示。静态显示方式是指每一个数码管的字段控制是独立的,每一个数码管都需要配置一个8位输出口来输出该字位的七段码。因此需要显示多位时需要多个输出DS18B204.7K6口,通常片内并口不够用,需要在片外扩展。动态显示又称为扫描显示方式,也就是在某一时刻只能让一个字位处于选通状态,其他字位一律断开,同时在字段线上发出该位要显示的字段码,这样在某一时刻某一位数码管就会被点亮,并显示出相应的字符。下一时刻改变所显示的字位和字段码,点亮另一个数码管,显示另一个字符。绕后一次扫描轮流点亮其他数码管,只要扫描速度快,利用人眼的视觉残留效应,会使人感觉到几位数码管都在稳定的显示。本设计采用数码管动态显示,电路如下图所示:显示部分电路图中由单片机P1口串接74HC245驱动两位共阳极数码管,上拉电阻排为10K。由P2.0和P2.1通过PNP型三极管Q1,Q2驱动其字位。三极管发射极接高电平,当P2.0或P2.1为低电平时使三极管导通选通数码管的某一位。