26.1.2反比例函数图像性质(第2课时)解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

反比例函数的图象与性质数缺形时少直觉,形少数时难入微.由两支曲线组成的.因此称它的图象为双曲线;当k0时,两支双曲线分别位于第一,三象限内;当k0时,两支双曲线分别位于第二,四象限内;当k0时,在每一象限内,y随x的增大而减小;当k0时,在每一象限内,y随x的增大而增大.反比例函数的图象无限接近于x,y轴,但永远不能到达x,y轴⑴反比例函数的图象是轴对称图形.直线y=x和y=-x都是它的对称轴;⑵反比例函数与的图象关于x轴对称,也关于y轴对称。反比例函数的图象和性质形状位置增减性图象的发展趋势对称性kyxkyx填一填1.函数是函数,其图象为,其中k=,自变量x的取值范围为.2.函数的图象位于第象限,在每一象限内,y的值随x的增大而,当x>0时,y0,这部分图象位于第象限.x2yx6y反比例双曲线2x≠0一、三减小>一3.函数的图象位于第象限,在每一象限内,y的值随x的增大而,当x>0时,y0,这部分图象位于第象限.x6y二、四增大<四4.若关于x,y的函数图象位于第一、三象限,则k的取值范围是_______________xky1+k-15.甲乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间y(h)表示为汽车的平均速度x(km/h)的函数,则这个函数的图象大致是()C6.下列函数中,图象位于第二、四象限的有;在图象所在象限内,y的值随x的增大而增大的有.32x(5)y32x(4)y3x2(3)y32x(2)y3x2(1)y(3)、(4)(2)、(3)、(5)(A)y=5x(B)y=2x+3(C)(D)4yx3yx2、如图,这是下列四个函数中哪一个函数的图象已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限?y随x的增大如何变化?(2)点B(3,4)、C(-2.5,-4.8)和D(2,5)是否在这个函数的图象上?1.反比例函数y=的图象过点(-4,-2),那么它的解析式为________.当x=1时,y=____.2.已知点A(-3,a),B(-2,b),在双曲线y=-上,则a___b(填、=或)。xky=8x8当堂训练12x做一做:1.用“>”或“<”填空:(1)已知和是反比例函数的两对自变量与函数的对应值.若,则.(2)已知和是反比例函数的两对自变量与函数的对应值.若,则.11xy,22xy,yx120xx120yy11xy,22xy,3yx120xx120yy2.已知(),(),()是反比例函数的图象上的三个点,并且,则的大小关系是()(A)(B)(C)(D)11xy,22xy,33xy,2yx1230yyy123xxx,,123xxx;312xxx;132.xxx123xxx;3.已知(),(),()是反比例函数的图象上的三个点,则的大小关系是.11y,23y,32y,2yx123yyy,,321yyy4.已知反比例函数.(1)当x>5时,0y1;(2)当x≤5时,则y1,(3)当y>5时,x?5yxC或y<00y1例4:图是反比例函数y=的图象的一支.根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m的取值范围是什么?(2)在这个函数图象的某一支上任取点A(a,b)和点B(a’,b’).如果a﹥a’,那么b和b’有怎么的大小关系?m-5xxy0书本练习P53.1.2aa’b’bAB1.已知点A(-2,y1),B(-1,y2)都在反比例函数的图象上,则y1与y2的大小关系(从大到小)为.x4yy1>y22.已知点A(-2,y1),B(-1,y2)都在反比例函数的图象上,则y1与y2的大小关系(从大到小)为.xky(k<0)y2>y13.已知点都在反比例函数的图象上,则y1与y2的大小关系(从大到小)为.xky(k<0)A(x1,y1),B(x2,y2)且x1<0<x2yxox1x2Ay1y2By1>0>y24.已知点都在反比例函数的图象上,则y1、y2与y3的大小关系(从大到小)为.x4yA(-2,y1),B(-1,y2),C(4,y3)yxo-1y1y2AB-24Cy3y3>y1>y2五、大显身手:1、已知反比例函数(k≠0)的图象经过点P(-1,2),则这个函数的图象位于()。A、第二、三象限B、第一、三象限C、第三、四象限D、第二、四象限2、已知反比例函数,下列结论不正确的是()。A、图象经过点(1,1)B、图象在第一、三象限C、当x>1时,0<y<1D、当x<0时,y随x的增大而增大。Dxkyxy1D642-2-4-55Oyx642-2-4-55Oyx642-2-4-55Oyx642-2-4-55OyxBACDD先假设某个函数图象已经画好,再确定另外的是否符合条件.3、如图,函数y=和y=-kx+1(k≠0)在同一坐标系内的图象大致是()xk.____)0k(xky)x1(ky.4图象的是在同一坐标系中的大致和如图能表示OxyACOxyDxyoOxyBD•5、如图是三个反比例函数在x轴上方的图像,由此观察得到()•Ak1k2k3Bk3k2k1•Ck2k1k3Dk3k1k2xky,xky,xky3322111k2k3B1.表示下面四个关系式的图像有图像与性质x1|y||x|1y|x|1y|x|1|y|2:已知,关于x的一次函数和反比例函数的图象都经过点(1,-2),求这两个函数的解析式。3ymxn25mnyx3.如图:一次函数y=ax+b的图象与反比例函数y=交于M(2,m)、N(-1,-4)两点(1)求反比例函数和一次函数的解析式;(2)根据图象写出反比例函数的值大于一次函数的值的x的取值范围。yxkxN(-1,-4)M(2,m)4.如图所示,已知直线y1=x+m与x轴、y轴分别交于点A、B,与双曲线y2=(k0)分别交于点C、D,且C点坐标为(-1,2).kx(3)利用图象直接写出当x在什么范围内取何值时,y1y2.(2)求出点D的坐标;(1)分别求直线AB与双曲线的解析式;5、如图,已知反比例函数的图象与一次函数y=kx+4的图象相交于P、Q两点,且P点的纵坐标是6。(1)求这个一次函数的解析式(2)求三角形POQ的面积12yxxyoPQDC如图,已知一次函数y=kx+b(k≠0)的图象与x轴.y轴分别交于A.B两点,且与反比例函数y=m/x(m≠0)的图象在第一象限内交于C点,CD垂直于x轴,垂足为点D,若OA=OB=OD=1.(1)求点A.B.D的坐标;(2)求一次函数和反比例函数的解析式DBACyxO小试牛刀学以致用1:已知点A(0,2)和点B(0,-2),点P在函数的图象上,如果△PAB的面积是6,求P的坐标。1yx2、正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x轴于B,CD⊥y轴于D(如图),则四边形ABCD的面积为()(A)1(B)(C)2(D)1x3252DCBAOyx例:王先生驾车从A地前往300km外的B地,他的车速平均每小时v(km),A地到B地的时间为t(h)。(1)以时间为横轴,速度为纵轴,画出反映v、t之间的变化关系的图象。(2)观察图象,回答:①当v100时,t的取值范围是什么?②如果平均速度控制在第每小时60km至每小时150km之间,王先生到达B地至少花费多少小时?o(1)(2)(3)(4)V(km/h)Y/LoV(km/h)Y/LoV(km/h)Y/LoV(km/h)Y/L•(05江西省中考题)已知甲,乙两地相距skm,汽车从甲地匀速行驶到乙地.如果汽车每小时耗油量为aL,那么从甲地到乙地的总耗油量y(L)与汽车的行驶速度v(km/h)的函数图象大致是().实际应用.2,,8,的纵坐标都是的横坐标和点且点两点的图象交于的图象与反比例函数已知一次函数如图BABAxybkxyAyOBx求(1)一次函数的解析式(2)根据图像写出使一次函数的值小于反比例函数的值的x的取值范围。

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功