时间序列分析17.某城市过去63年中每年降雪量数据(单位:mm)如表3—20所示(行数据)。表3—20126.482.478.151.190.976.2104.587.4110.52569.353.539.863.646.772.979.683.680.760.37974.449.654.771.849.1103.951.682.483.677.879.389.685.558120.7110.565.439.940.188.771.48355.989.984.8105.2113.7124.7114.5115.6102.4101.489.871.570.998.355.566.178.4120.597110(1)判断该序列的平稳性与纯随机性。(2)如果序列平稳且非白噪声,选择适当模型拟合该序列的发展。(3)利用拟合模型,预测该城市未来5年的降雪量。答:(1)由a-time时序图(左上角),该图平稳由ACF自相关系数图(右上角),该图非纯随机性(2)因为该序列是平稳且非白噪声序列,由图可知ACF图拖尾,PACF图一阶截尾,故该序列可拟合为AR(1)模型图1(3)由图1和xt-time时序图(右下角)可知,该城市未来5年的降雪量预测为:89.01662,82.43668,80.37336,79.72634,79.52345该题的程序:18.某地区连续74年的谷物产量(单位:千吨)如表3—21所示(行数据)。表3—210.970.451.611.261.371.431.321.230.840.891.181.331.210.980.910.611.230.971.100.740.800.810.800.600.590.630.870.360.810.910.770.960.930.950.650.980.700.861.320.880.680.781.250.791.190.690.920.860.860.850.900.540.321.401.140.690.910.680.570.940.350.390.450.990.840.620.850.730.660.760.630.320.170.46(1)判断该序列的平稳性与纯随机性。(2)选择适当模型拟合该序列的发展。(3)利用拟合模型,预测该地区未来5年的谷物产量。答:(1)由a-time时序图(左上角)可知,该图是平稳的由ACF自相关系数图(右上角)可知,该图是非纯随机性的(2)由(1)可知该序列是平稳且非纯随机性序列,由于ACF图拖尾,PACF图一阶截尾,故该序列可拟合为AR(1)模型图2(3)由图2和xt-time时序图(右下角)可知,该城市未来5年的谷物产量预测为:0.7018394,0.7919400,0.8255083,0.8380146,0.846740该题的程序: