实用标准文案精彩文档排列与组合一、教学目标1、知识传授目标:正确理解和掌握加法原理和乘法原理2、能力培养目标:能准确地应用它们分析和解决一些简单的问题3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力二、教材分析1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论.2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同.三、活动设计1.活动:思考,讨论,对比,练习.2.教具:多媒体课件.四、教学过程正1.新课导入随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.实用标准文案精彩文档2.新课我们先看下面两个问题.(l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有2班,轮船有3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?板书:图因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有4十2十3=9种不同的走法.一般地,有如下原理:加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1十m2十…十mn种不同的方法.(2)我们再看下面的问题:由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法?板书:图这里,从A村到B村有3种不同的走法,按这3种走法中的每一实用标准文案精彩文档种走法到达B村后,再从B村到C村又有2种不同的走法.因此,从A村经B村去C村共有3X2=6种不同的走法.一般地,有如下原理:乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么完成这件事共有N=m1m2…mn种不同的方法.例1书架上层放有6本不同的数学书,下层放有5本不同的语文书.1)从中任取一本,有多少种不同的取法?2)从中任取数学书与语文书各一本,有多少的取法?解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6十5=11.答:从书架L任取一本书,有11种不同的取法.(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是N=6X5=30.答:从书架上取数学书与语文书各一本,有30种不同的方法.练习:一同学有4枚明朝不同古币和6枚清朝不同古币1)从中任取一枚,有多少种不同取法?2)从中任取明清古币各一枚,有多少种不同取法?实用标准文案精彩文档例2:(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数?(2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数?(3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数?解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是N=5X5X5=125.答:可以组成125个三位数.练习:1、从甲地到乙地有2条陆路可走,从乙地到丙地有3条陆路可走,又从甲地不经过乙地到丙地有2条水路可走.(1)从甲地经乙地到丙地有多少种不同的走法?(2)从甲地到丙地共有多少种不同的走法?2.一名儿童做加法游戏.在一个红口袋中装着2O张分别标有数1、2、…、19、20的红卡片,从中任抽一张,把上面的数作为被加数;在另一个黄口袋中装着10张分别标有数1、2、…、9、1O的黄卡片,从中任抽一张,把上面的数作为加数.这名儿童一共可以列出实用标准文案精彩文档多少个加法式子?3.题2的变形4.由0-9这10个数字可以组成多少个没有重复数字的三位数?小结:要解决某个此类问题,首先要判断是分类,还是分步?分类时用加法,分步时用乘法其次要注意怎样分类和分步,以后会进一步学习练习1.(口答)一件工作可以用两种方法完成.有5人会用第一种方法完成,另有4人会用第二种方法完成.选出一个人来完成这件工作,共有多少种选法?2.在读书活动中,一个学生要从2本科技书、2本政治书、3本文艺书里任选一本,共有多少种不同的选法?3.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后共有多少项?4.从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通.从甲地到丙地共有多少种不同的走法?5.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?作业:实用标准文案精彩文档排列【复习基本原理】1.加法原理做一件事,完成它可以有n类办法,第一类办法中有m1种不同的方法,第二办法中有m2种不同的方法……,第n办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…mn种不同的方法.2.乘法原理做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,.那么完成这件事共有N=m1m2m3…mn种不同的方法.3.两个原理的区别:【练习1】1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同的机票?2.由数字1、2、3可以组成多少个无重复数字的二位数?请一一列出.【基本概念】1.什么叫排列?从n个不同元素中,任取m(nm)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n个不同元素中取出m个元素的一个排列....实用标准文案精彩文档2.什么叫不同的排列?元素和顺序至少有一个不同.3.什么叫相同的排列?元素和顺序都相同的排列.4.什么叫一个排列?【例题与练习】1.由数字1、2、3、4可以组成多少个无重复数字的三位数?2.已知a、b、c、d四个元素,①写出每次取出3个元素的所有排列;②写出每次取出4个元素的所有排列.【排列数】1.定义:从n个不同元素中,任取m(nm)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnp表示.用符号表示上述各题中的排列数.2.排列数公式:mnp=n(n-1)(n-2)…(n-m+1)1np;2np;3np;4np;计算:25p=;45p=;215p=;【课后检测】1.写出:①从五个元素a、b、c、d、e中任意取出两个、三个元素的所有排列;②由1、2、3、4组成的无重复数字的所有3位数.③由0、1、2、3组成的无重复数字的所有3位数.实用标准文案精彩文档2.计算:①3100p②36p③2848p2p④712812pp排列课题:排列的简单应用(1)目的:进一步掌握排列、排列数的概念以及排列数的两个计算公式,会用排列数公式计算和解决简单的实际问题.过程:一、复习:(引导学生对上节课所学知识进行复习整理)1.排列的定义,理解排列定义需要注意的几点问题;2.排列数的定义,排列数的计算公式)1()2)(1(mnnnnAmn或)!(!mnnAmn(其中m≤nm,nZ)3.全排列、阶乘的意义;规定0!=14.“分类”、“分步”思想在排列问题中的应用.二、新授:例1:⑴7位同学站成一排,共有多少种不同的排法?解:问题可以看作:7个元素的全排列——77A=5040⑵7位同学站成两排(前3后4),共有多少种不同的排法?解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040⑶7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?实用标准文案精彩文档解:问题可以看作:余下的6个元素的全排列——66A=720⑷7位同学站成一排,甲、乙只能站在两端的排法共有多少种?解:根据分步计数原理:第一步甲、乙站在两端有22A种;第二步余下的5名同学进行全排列有55A种则共有22A55A=240种排列方法⑸7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法一(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有25A种方法;第二步从余下的5位同学中选5位进行排列(全排列)有55A种方法所以一共有25A55A=2400种排列方法.解法二:(排除法)若甲站在排头有66A种方法;若乙站在排尾有66A种方法;若甲站在排头且乙站在排尾则有55A种方法.所以甲不能站在排头,乙不能排在排尾的排法共有77A-662A+55A=2400种.小结一:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑.例2:7位同学站成一排.⑴甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有66A种方法;再将甲、乙两个同学“松绑”进行排列有22A种方法.所以这样的排法一共有66A22A=1440⑵甲、乙和丙三个同学都相邻的排法共有多少种?实用标准文案精彩文档解:方法同上,一共有55A33A=720种.⑶甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有25A种方法;将剩下的4个元素进行全排列有44A种方法;最后将甲、乙两个同学“松绑”进行排列有22A种方法.所以这样的排法一共有25A44A22A=960种方法.解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有255A种方法,所以丙不能站在排头和排尾的排法有960)2(225566AAA种方法.解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有14A种方法,再将其余的5个元素进行全排列共有55A种方法,最后将甲、乙两同学“松绑”,所以这样的排法一共有14A55A22A=960种方法.小结二:对于相邻问题,常用“捆绑法”(先捆后松).例3:7位同学站成一排.⑴甲、乙两同学不能相邻的排法共有多少种?解法一:(排除法)3600226677AAA解法二:(插空法)先将其余五个同学排好有55A种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六实用标准文案精彩文档个位置(空)有26A种方法,所以一共有36002655AA种方法.⑵甲、乙和丙三个同学都不能相邻的排法共有多少种?解:先将其余四个同学排好有44A种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有35A种方法,所以一共有44A35A=1440种.小结三:对于不相邻问题,常用“插空法”(特殊元素后考虑).三、小结:1.对有约束条件的排列问题,应注意如下类型:⑴某些元素不能在或必须排列在某一位置;⑵某些元素要求连排(即必须相邻);⑶某些元素要求分离(即不能相邻);2.基本的解题方法:⑴有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法);⑵某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;⑶某些元素不相邻排列时,可以先排其他元素,再将