纯正弦波逆变器制作学习资料高频篇由发烧电子DIY空间提供一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф=B*S⑴Ф-----磁通(韦伯)B-----磁通密度(韦伯每平方米或高斯)1韦伯每平方米=104高斯S-----磁路的截面积(平方米)磁通密度磁通密度是磁感应强度的一个别名。垂直穿过单位面积的磁力线叫做磁通量密度,简称磁通密度,测量主机侧板底部磁通密度它从数量上反映磁力线的疏密程度。磁场的强弱通常用磁感应强度“B”来表示,哪里磁场越强,哪里B的数值越大,磁力线就越密。按照国际单位制磁感应强度的单位是特斯拉,其符号为T:磁感应强度还有一个过时的单位:高斯,其符号为G:1T=10000G。这个符号在技术设施中还广泛使用。通常条形磁铁两极附近的磁感应强度大约是几十到几百高斯。在处理与磁性有关问题时,除了要用到磁感应强度外,常常还要讨论穿过一块面积的磁力线数目,称做磁CPU附近磁通密度通量,简称磁通,有Φ示。磁通量的单位是韦伯,用Wb表示,以前还有麦克斯韦有Mx表示。如果磁场中某处的磁感应强度为B,在该处有一块与磁通垂直的面,它的面积为S,则穿过它的磁通量就是Φ=BS式中磁感应强度B的单位是高斯(Gs);面积S的单位是平方厘米;磁通量的单位是麦克斯韦(Mx)。磁通量的简介公式:Φ=BS,适用条件是B与S平面垂直。当B与S存在夹角θ时,Φ=B*S*cosθ。Φ读“fai”四声。单位:在国际单位制中,磁通量的单位是韦伯,符号是Wb,1Wb=1T*m^2;=1V*S,是标量,但有正负,正负仅代表穿向。意义:磁通量的意义可以用磁感线形象地加以说明.我们知道在同一磁场的图示中,磁感线越密的地方,也就是穿过单位面积的磁感线条数越多的地方,磁感应强度B越大.因此,B越大,S越大,穿过这个面的磁感线条数就越多,磁通量就越大.B与S平面不垂直的情况磁通量通过某一平面的磁通量的大小,可以用通过这个平面的磁感线的条数的多少来形象地说明。在同一磁场中,磁感应强度越大的地方,磁感线越密。因此,B越大,S越大,磁通量就越大,意味着穿过这个面的磁感线条数越多。表示磁场分布情况的物理量。通过磁场中某处的面元dS的磁通量dΦB定义为该处磁感应强度的大小B与dS在垂直于B方向的投影dScosθ的乘积,即dFB=BdScosθ式中θ是面元的法线方向n与磁感应强度B的夹角。磁通量是标量,θ<90°为正值,θ>90°为负值。通过任意闭合曲面的磁通量ΦB等于通过构成它的那些面元的磁通量的代数和,即对于闭合曲面,通常取它的外法线矢量(指向外部空间)为正。磁场的高斯定理指出,通过任意闭合曲面的磁通量为零,即它表明磁场是无源的,不存在发出或会聚磁力线的源头或尾闾,亦即不存在孤立的磁单极。以上公式中的B既可以是电流产生的磁场,也可以是变化电场产生的磁场,或两者之和。磁通密度是通过垂直于磁场方向的单位面积的磁通量,它等于该处磁场磁感应强度的大小B。磁通密度精确地描述了磁力线的疏密。通量概念是描述矢量场性质的必要手段,通量密度则描述矢量场的强弱。磁通量和磁通密度,电通量和电通密度都是如此。在国际单位制(SI)中,磁通量的单位是韦伯(Wb)。通电导体与磁场方向垂直时,它受力的大小既与导线长度L成正比,又与导线中的电流I成正比,即与I和L的乘积IL成正比,公式是F=ILB,式中B是磁感应强度。磁通量的定义为覆盖某面积的磁场的积分其中Φ为磁通量,B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS这条方程的体积积分,跟散度定理合用,给出以下的结果:亦即是说,通过任何密闭表面的磁通量一定为零;自由“磁电荷”是不存在的。对比下,另一条麦克斯韦方程──高斯电场定律为:∫∫E.ds=Q/ε0其中:E为电场强度,ρ为自由电荷的密度(不包括在物料中被束缚的双极电荷),ε0为真空介电常数。注意这指出了电单极的存在,也就是,自由的正或负电荷。磁通量密度向量的方向定义为从磁南极到磁北极(磁铁里面)。在磁铁外,场线会由北到南。若磁场通过能导电的电线环,而磁通量的改变的话,会引起电动势的生成,并因此会产生电流(在环中)。其关系式可由法拉第定律得出:这就是发电机背后的原理。B=H*μ⑵μ-----磁导率(无单位也叫无量纲)H-----磁场强度(伏特每米)H=I*N/l⑶I-----电流强度(安培)N-----线圈匝数(圈T)l-----磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:EL=⊿Ф/⊿t*N⑷EL=⊿i/⊿t*L⑸⊿Ф-----磁通变化量(韦伯)⊿i-----电流变化量(安培)⊿t-----时间变化量(秒)N-----线圈匝数(圈T)L-------电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф/⊿t*N=⊿i/⊿t*L变形可得:N=⊿i*L/⊿Ф再由Ф=B*S可得下式:N=⊿i*L/(B*S)⑹且由⑸式直接变形可得:⊿i=EL*⊿t/L⑺联合⑴⑵⑶⑷同时可以推出如下算式:L=(μ*S)/l*N2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:QL=1/2*I2*L⑼QL--------电感中储存的能量(焦耳)I--------电感中的电流(安培)L-------电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2=(E1*D)/(E2*(1-D))⑽N1--------初级线圈的匝数(圈)E1--------初级输入电压(伏特)N2--------次级电感的匝数(圈)E2--------次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压:200---340V输出直流电压:23.5V输出电流:2.5A*2输出总功率:117.5W2.确定初次级匝数比:次级整流管选用VRRM=100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2=VIN(max)/(VRRM*k/2)⑾N1-----初级匝数VIN(max)------最大输入电压k-----安全系数N2-----次级匝数Vrrm------整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2=340/(100*0.9/2)≌(全等)7.63.计算功率场效应管的最高反峰电压:Vmax=Vin(max)+(Vo+Vd)/N2/N1⑿Vin(max)-----输入电压最大值Vo-----输出电压Vd-----整流管正向电压Vmax=340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压:Vmax≌525.36(V)4.计算PWM占空比:由⑽式变形可得:D=(N1/N2)*E2/(E1+(N1/N2*E2)D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。那么计算初级电感量就可以只以PWM的一个周期来分析,这时可由⑼式可以有如下推导过程:(P/η)/f=1/2*I2*L⒁P-------电源输出功率(瓦特)η----能量转换效率f----PWM开关频率将⑺式代入⒁式:(P/η)/f=1/2*(EL*⊿t/L)2*L⒂⊿t=D/f(D-----PWM占空比)将此算式代入⒂式变形可得:L=E2*D2*η/(2*f*P)⒃这里取效率为85%,PWM开关频率为60KHz.在输入电压最小的电感量为:L=2002*0.4812*0.85/2*60000*117.5计算初级电感量为:L1≌558(uH)计算初级峰值电流:由⑺式可得:⊿i=EL*⊿t/L=200*(0.481/60000)/(558*10-6)计算初级电流的峰值为:Ipp≌2.87(A)初级平均电流为:I1=Ipp/2/(1/D)=0.690235(A)6.计算初级线圈和次级线圈的匝数:磁芯选择为EE-42(截面积1.76mm2)磁通密度为防止饱和取值为2500高斯也即0.25特斯拉,这样由⑹式可得初级电感的匝数为:N1=⊿i*L/(B*S)=2.87*(0.558*10-3)/0.25*(1.76*10-4)计算初级电感匝数:N1≌36(匝)同时可计算次级匝数:N2≌5(匝)7.计算次级线圈的峰值电流:根据能量守恒定律当初级电感在功率管导通时储存的能量在截止时在次级线圈上全部释放可以有下式:由⑻⑼式可以得到:Ipp2=N1/N2*Ipp⒄Ipp2=7.6*2.87由此可计算次级峰值电流为:Ipp2=21.812(A)次级平均值电流为I2=Ipp2/2/(1/(1-D))=5.7(A)6.计算激励绕组(也叫辅助绕组)的匝数:因为次级输出电压为23.5V,激励绕组电压取12V,所以为次级电压的一半由此可计算激励绕组匝数为:N3≌N2/2≌3(匝)激励绕组的电流取:I3=0.1(A)推挽全桥双向直流变换器的研究1引言随着环境污染的日益严重和新能源的开发,双向直流变换器得到了越来越广泛的应用,像直流不停电电源系统,航天电源系统、电动汽车等场合都应用到了双向直流变换器。越来越多的双向直流变换器拓扑也被提出,不隔离的双向直流变换器有BiBuck/Boost、BiBuck-Boost、BiCuk、BiSepic-Zeta;隔离式的双向直流变换器有正激、反激、推挽和桥式等拓扑结构。不同的拓扑对应于不同的应用场合,各有其优缺点。推挽全桥双向直流变换器是由全桥拓扑加全波整流演变而来。推挽侧为电流型,输入由蓄电池供给,全桥侧为电压型,输入接在直流高压母线上。此双向直流变换器拓扑适用在电压传输比较大、传输功率较高的场合。本文分析了推挽全桥双向直流变换器的工作原理,通过两种工作模式的分析,理论上证明了此拓扑实现能量双向流动的可行性,并对推挽侧开关管上电压尖峰形成原因进行了分析,提出了解决方法,在文章的最后给出了仿真波形和实验波形。2工作原理图1为推挽全桥双向DC/DC变换器原理图。图2给出了该变换器的主要波形。变换器原副边的电气隔离是通过变压器来实现的,原边为电流型推挽电路,副边为全桥电路,该变换器有两种工作模式:(1)升压模式:在这种工作模式下S1、S2作为开关管工作;S3,S4,S5,S6作为同步整流管工作,整流方式为全桥整流,这种整流方式适用于输出电压比较高,输出电流比较小的场合。由于电感L的存在S1、S2的占空比必须大于0.5。(2)降压模式:在这种工作模式下S3,S4,S5,S6作为开关管工作,S1、S2作为同步整流管工作,整流方式为全波整流。分析前,作出如下假设:所有开关管、二极管均为理想器件;所有电感、电容、变压器均为理想元件;,;2.1升压工作模式在升压工作模式下,原边输入为电流型推挽电路,副边输出为全桥整流电路。S1,S2作为开关管工作,S3,S4,S5,S6作为同步整流管工作。电感电流工作于连续模式。图1推挽全桥双向DC/DC变换器图2推挽全桥双向DC/DC变换器电路波形以一个开关周期T为例:2.2降压工作模式在降压工作模式下,输入为全桥电路,输出为全波整流电路。S3,S4,S5,S6作为开关管工作,S1,S2作为同步整流管工作。以一个开关周期T为例:由此可见,当与(,);与(,)互补工作时,输入输出电压关系是相同的,变换器具有很好的可逆性。3缓冲电路推挽全桥双向直流变换器推挽侧的两个开关管在关断时有较大的电压尖峰。这是由于电感和漏感的存在。因为两管的占空比大于0.5,所以存在共同的导通时间,当这段时间结束关断其中一个开关管时,会引起很大的,形成较大的电压尖峰加在开关管上。而全桥侧由于是电压型且不存在短路问题,所以没有电压尖峰的问题。基于以上问题就需要采用合适的缓冲电路来缓解电压尖峰问题。3.1缓冲电路分析与