第2章有理数第1课时:正数和负数(1)教学重点和难点:重点:了解正数与负数是由实际需要产生的及会用正负数表示生活中常用的具有相反意义的量。难点:学习负数的必要性,能准确地举出具有相反意义的量的典型例子。二、讲授新课:1.相反意义的量:①试着让学生考虑这些例子中出现的每一对量,有什么共同特点?(具有相反意义。向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义)②你能举出几对日常生活中具有相反意义的量吗?2.正数和负数:①能用我们已经学的来很好的表示这些相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?②怎样表示具有相反意义的量呢?能否从天气预报出现的标记中,得到一些启发呢?为了表示具有相反意义的量,上面我们引进了―5,―2,―237,―0.7等数。像这样的一些新数,叫做负数(negativenumber)。过去学过的那些数(零除外),如10,3,500,1.2等,叫做正数(positivenumber)。正数前面有时也可放一个“+”(读作“正”),如5可以写成+5。注意:零既不是正数,也不是负数。1,下面说法正确的是()A.正数都带有“+”号B.不带“+”号的数都是负数C.小学数学中学过的数都可以看作是正数D.0既不是正数也不是负数2,一种零件的内径尺寸在图纸上是10±0.05(单位mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸。三、课堂小结:正数和负数表示的是一对相反意义的量,哪种意义为正是可以任意规定的。如果把一种意义规定为正,则相反意义的量规定为负。常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。第2课时:正数和负数(2)教学重点和难点:重点:了解有理数包括哪些数。难点:要明确有理数分类的标准,分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。二、讲授新课:1.数的扩充:数1,2,3,4,…叫做正整数;―1,―2,―3,―4,…叫做负整数;正整数、负整数和零统称为整数;数32,41,854,+5.6,…叫做正分数;―97,―76,―3.5,…叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数。2.思考并回答下列问题:①“0”是整数吗?是正数吗?是有理数吗?②“―2”是整数吗?是正数吗?是有理数吗?③自然数就是整数吗?是正数吗?是有理数吗?要求学生区分“正”与“整”;小数可化为分数。3.有理数的分类不同的分类标准可以将有理数进行不同的分类:①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:负分数正分数分数负整数正整数整数有理数0②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表:负分数负整数负有理数正分数正整数正有理数有理数0注:①“0”也是自然数。②“0”的特殊性。4.把一些数放在一起,就组成一个数的集合,简称数集(setofnumber)。所有正数组成的集合,叫做正数集合;所有负数组成的集合叫做负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫做自然数集。5.例题;例1:把下列各数填入表示它所在的数集的圈里:―18,722,3.1416,0,2001,53,―0.142857,95℅.正数集负数集整数集有理数集注:要正确判断一个数属于哪一类,首先要弄清分类的标准。要特别注意“0”不是正数,但是整数。在数学里,“正”和“整”不能通用,是有区别的,“正”是相对于“负”来说的,“整”是相对于分数而言的。6.课堂练习:(1)下列说法正确的是()①零是整数;②零是有理数;③零是自然数;④零是正数;⑤零是负数;⑥零是非负数。A:①②③⑥B:①②⑥C:①②③D:②③⑥(2)下列说法正确的是()A:在有理数中,零的意义表示没有B:正有理数和负有理数组成全体有理数C:0.5既不是整数,也不是分数,因而它不是有理数D:零是最小的非负整数,它既不是正数,又不是负数(3)―100不是()A:有理数B:自然数C:整数D:负有理数(4)判断:(1)0是正数()(2)0是负数()(3)0是自然数()(4)0是非负数()(5)0是非正数()(6)0是整数()(7)0是有理数()(8)在有理数中,0仅表示没有。()(9)0除以任何数,其商为0()(10)正数和负数统称有理数。()(11)―3.5是负分数()(12)负整数和负分数统称负数()(13)0.3既不是整数也不是分数,因此它不是有理数()(14)正有理数和负有理数组成全体有理数。()答案:1.A;2.D;3.B;4.×;×;√;√;√;√;√;×;×;×;√;×;×;×。第3课时:数轴(1)教学重点和难点:重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。难点:正确理解有理数与数轴上点的对应关系。2.数轴的画法:师生共同总结数轴的画法步骤:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O,叫做原点,用这点表示数0;(相当于温度计上的0℃。)第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来)。相反的方向就是负方向;(相当于温度计0℃以上为正,0℃以下为负。)第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度。(相当于温度计上1℃占1小格的长度。)在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,…,从原点向左,每隔一个单位长度取一点,它们依次表示–1,–2,–3,…。3.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。4.例题;例1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?例2:把下面各小题的数分别表示在三条数轴上:(1)2,-1,0,323,+3.5(2)―5,0,+5,15,20;(3)―1500,―500,0,500,1000。分析:要在数轴上表示数,首先要正确画出数轴,标明原点、正方向(一般从左到右为正方向)和单位长度这三要素,然后再表示数,第(1)题,数不大,单位长度取1cm代表1,第(2)、例3:借助数轴回答下列问题(1)有没有最小的正整数?有没有最大的正整数?如果有,把它指出来;(2)有没有最小的负整数?有没有最大的负整数?如果有,把它标出来。三、课堂小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但反过来并不是数轴上的所有点都表示有理数;2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。第4课时:数轴(2)教学重点和难点:重点:会比较有理数的大小。难点:如何比较两个负数(尤其是两个负分数)的大小。二、讲授新课:1.发现、总结:由学生归纳出:正数都大于0;负数都小于0;正数大于一切负数。2.例题;例1:比较―3,0,2的大小。例2比较下列各数的大小:―1.3,0.3,―3,―5.将这些数分别在数轴上表示出来:三、课堂小结:比较有理数大小法则是:在数轴上表示的两个数,右边的数总比左边的数大。根据法则先在同一个数轴上表示出同一组数的位置,然后用“<”号连接,这种方法比较直观,但画图表示数较麻烦。另一种方法是利用数轴上数的位置得出比较大小规律,即正数都大于0,负数都小于0,正数大于一切负数,则比较更方便些。第5课时:相反数教学重点和难点:重点:理解相反数的代数定义与几何定义,熟练地求出一个已知数的相反数。难点:多重符号的数的化简问题的理解。二、讲授新课:1.发现、总结相反数的定义:象这样只有符号不同的两个数称互为相反数(oppositenumber)。理解:代数定义:只有符号不同的两个数互为相反数。0的相反数是0。几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。0的相反数是0。说明:“互为相反数”的含义是相反数,是成对出现的,因而不能说“―6是相反数”。“0的相反数是0”是相反数定义的一部分。这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。2.例题;例1:判断下列说法是否正确:①―5是5的相反数;()③5与―5互为相反数;()④―5是相反数;()⑤正数的相反数是负数,负数的相反数是正数。例2:(1)分别写出5、―7、―321、+11.2的相反数;(2)指出―2.4各是什么数的相反数。三、课堂小结:1.只有符号不同的两个数互为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点;2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数,相反数是成对出现的;3.正号“+”的功能是对一个数的符号予以确认;而负号“―”的功能是对一个数的符号予以改变。第6课时:绝对值教学重点和难点:重点:让学生掌握求一个已知数的绝对值及正确理解绝对值的概念。难点:对绝对值的几何意义、代数定义的导出、对“负数的绝对值是它的相反数”的理解。二、讲授新课:1.发现、总结绝对值的定义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue)。记作|a|。例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。同样可知|―4|=4,|+1.7|=1.7。2.试一试:你能从中发现什么规律?由绝对值的意义,我们可以知道:(1)|+2|=,(2)|0|=;(3)|―3|=。概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a的绝对值的一般规律:1.一个正数的绝对值是它本身;2.0的绝对值是0;3.一个负数的绝对值是它的相反数。即:①若a>0,则|a|=a;②若a<0,则|a|=–a;③若a=0,则|a|=0;或写成:)0()0()0(0aaaaaa。3.绝对值的非负性:由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0。4.例题;例1:求下列各数的绝对值:217,101,―4.75,10.5例2:化简:(1)21;(2)311。解:(1)2121211;(2)311311。分析:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到。在(3)中要注意区分绝对值符号与括号的不同含义。三、课堂小结:1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。2.求一个数的绝对值注意先判断这个数是正数还是负数。第7课时:有理数的大小比较教学重点和难点:重点:利用绝对值比较两个负数的大小。难点:利用绝对值比较两个异分母负分数的大小。二、讲授新课:1.发现、总结:①在数轴上,画出表示―2和―5的点,这两个数中哪个较大?再找几对类似的数试一下,从中你能概括出直接比较两个负数大小的法则吗?②我们发现:两个负数,绝对值大的反而小.这样,比较两个负数的大小,只要比较它们的绝对值的大小就可以了。2.例如,比较两个负数43和32的大小:3.归纳:联系到2.2节的结论,我们可以得到有理数大小比较的一般法则:(1)负数小于0,