计量速成法――让初学者瞬间开窍

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

【原创】计量论文写作和发表的黑客教程1:计量速成法——让初学者瞬间开窍byZeraNa本文的缘起:当初一个舍友来自西部地区,从没学过计量(OLS都没学过)。但毕业论文老板要求用数据说话,发愁。我于心不忍,告诉她:我每天晚上自习回来,睡觉前花10分钟给你讲解一下STATA的操作和出来的各项结果意义。第一天,我讲了OLS。画了一张散点图和一根直线,用了1分钟就让她完全理解了OLS的精髓,这是用来干啥的。后面9分钟讲解了STATA的操作和OLS的各种变种。结果只一个星期,讲完五种方法(下面会介绍),她信心大增。后来一下子发了好几篇CSSCI,计量做的天花乱坠,让人误以为是一个大师。毕业论文也顺利通过。她说我的方法是当今世界上最快的计量速成法。她说,以后有时间要好好看看计量书,打打基础。我推荐她读伍德里奇的那本现代观点。但她论文发表了好多篇,至今还没看那本书。问其原因:“看了一下OLS,跟你讲的没啥区别,就是多了些推导。那些推导看不看都不影响我用软件。现在没空看,先发论文再说。”我笑其太浮躁。但后来想想,这种学习方法不一定适合所有人,但或许适合一部分被论文压迫的人。故有必要写出来让他们有所收获,不会因为发不了CSSCI而担忧,不会因为毕业论文不会做计量而担忧。你是不是属于这样的人群?请看下面:本文的目标人群:不懂计量也不想看计量书的人;想学计量却缺乏时间的人;想学计量却看不懂、推导不了那些恐怖矩阵的人,也就是不想看计量推导过程,也想发论文的人。不会计量却想应急发几篇CSSCI,尽快毕业的人。所有想速成的人。所有不信计量能速成的人。但是,目标人群一定要能看懂STATA软件操作手册的人(或者其他软件操作手册。不想看大部头软件手册的人往后面看,最后我为你提供了一本:从入门到精通的、综合考虑STATA操作的广度、深度、难易度和阅读速度的、专门针对计量经济学领域技巧的、由STATA著名官方编程人员撰写的、10天就能掌握的、涵盖经济研究常见计量方法的书籍,而且有下载链接)。如果你不认得手册上的字,不要来告诉我。我也不认得。如果你能找到一个懂STATA、EVIEWS的人给你讲解一下,那么你看不懂也无所谓。本文的目标:不看计量推导、不看计量书籍,就能速成,大规模批量生产计量论文,灌水CSSCI(可行性在后面有严密论证),甚至发一流期刊。(你如果不信,后面有例子呀)时间预算:深刻理解本贴内容,2小时或者更多;阅读由我全面比较寻找出来的难度广度深度速度达到最优平衡的书,10天;阅读我给出的quantile快速入门,10分钟;用相关数据进行全面训练,断断续续,约1-3天;合计时间:2周左右。注:这不是你写一篇论文的时间。这是你从不认识STATA开始,到全面熟练地操作经济研究上常用计量方法的一个可行时间长度。可能更快,也可能更慢,这取决于你的阅读速度。严重警告:不是教你如何抄袭作弊,而是教你写计量论文的方法和捷径。本文犹如海洛因,容易上瘾,且杀伤力巨大,切忌滥用。做理论计量研究的人,请立刻回避,浪费时间不要怪我。对崇尚“学计量必须完整掌握推导”的人,具有明显误导作用,请即刻回避。本文方法一般只能用于:应急发表、被迫发表论文等极端情况。==============================================目录一、计量论文的两大要点是什么?二、如何判断计量论文的水平高低?三、做计量的“大杀器”有哪些?四、瞎折腾计量的秘诀五、大规模发CSSCI的不传之秘【本节泄漏天机,敬请跳过】六、案例分析:借助大杀器成功登上一流期刊七、软件操作方面书籍推荐(10天能读完)一、计量论文的两大要点是什么?1、计量模型的建立(就是那个方程,表达什么经济含义要知道);2、模型中的系数如何估计出来(关键在于估计方法的选择)。第1个要点涉及你论文主题。你一般要想用数据检验某种经济关系,根据这种经济关系来建立计量模型。如果你不知道要检验什么经济关系,那我劝你就此打住。你发不了一流期刊了。第2个要点。千万种方法的出现,目的都是要把那个系数给估计出来。不同估计方法的估计效果好坏,就是根据各种统计量来判断。如果能选择一种最合适你数据的估计方法,那么这论文基本就成了。二、如何判断计量论文的水平高低?掌握了上面两个要点,只是说你能写出一篇计量论文,并不是说能写出一篇高水平的论文。水平的高低在于你处理这两个要点时水平的高低。下面仔细讲解。如果只是为了写计量论文,只需要“知其然”即可。没有人会因为不会推导OLS估计量而对软件里面出来的结果不知所措。这条途径,最快捷的走法是找一个懂的人,把结果里面的各种东西所表示的意思给你讲一遍,每个东西要注意什么。基本就可以了。在一般的CSSCI上发表论文没有什么问题。如果找不到人,就看STATA的手册,里面的例子会讲解每个指标参数统计量的含义。这样慢一点,但效果很好,而且也能成为STATA专家。STATA手册比高级计量教材看起来轻松多了,就是告诉你怎么操作软件,然后得到什么结果的。计量论文中的估计问题,最关键的事情,不是能推导估计量,而是在STATA里面选择一个“合适”的方法估计出来。然后解释结果的经济意义。而计量水平的高低,不在于方法的复杂性,而在于方法的合适程度。因此高水平的计量论文,不必要求作者掌握高深的计量推导,而在于“选择”的技巧。每种计量方法,都有优劣。所谓用人之长,容人之短。水平高的人,能够选择以其之长,攻它之短。同时又能隐藏计量方法内在的拙劣。其实,计量论文的水平真正的决定因素是论文主题和思想的重要性。这个话题大家都很关心,就很重要,发表就很容易。所以,你会发现国际顶级期刊上一些计量论文所用的方法很简单。这些论文能发表,主要是他讨论的问题很重要,采用的方法即使有缺陷,也无伤大雅。如果问题不是非常重要,只是有新意,但是估计方法比较合适,也能发一个中上等期刊。如果问题属于鸡毛蒜皮之类,那就只能诉诸于超级复杂的计量方法,祈求审稿人看论文时,方法还没看完就已经累得半死,再也没有心情来思考你的问题的重要性,然后也能通过了。三、做计量的“大杀器”有哪些?所谓的大杀器,不是指超级复杂的计量方法,而是指这种东西一旦用起来,一般不会有人来攻击。所谓的一招毙命,毙了审稿人的命。计量方法很多,可以说满天飞。但是,真正有价值的方法,被人公认为具有一定可信度的方法(所谓的“大杀器”),只有5种(贪多嚼不烂)。并不是你所看到的所有的方法都有人信。这点大部分初学计量的人都不会意识到。看到书上介绍一个方法,就认为这是一个好方法。其实不是。书上很多方法的介绍,仅仅是出于理论推演的需要,并不是实际研究中都能用的。你如果查阅一下国际上关于经验研究类的论文,会发现大部分论文所用方法无非是:1、简单回归;2、工具变量回归;3、面板固定效应回归;4、差分再差分回归(differenceindiffernece);5、狂忒二回归(Quantile)。大杀器就这几种,破绽最少,公认度最高,使用最广泛。真是所谓的老少皆宜、童叟无欺。其他的方法都不会更好,只会招致更多的破绽。你在STATA里面还可以看到无数的其他方法,例如GMM、随机效应等。GMM其实是一个没有用的忽悠,例如估计动态面板的diffGMM,其关键思想是当你找不到工具变量时,用滞后项来做工具变量。结果你会发现令人崩溃的情况:不同滞后变量的阶数,严重影响你的结果,更令人崩溃的是,一些判断估计结果优劣的指标会失灵。这GMM的唯一价值在于理论价值,而不在于实践价值。你如果要玩计量,你就可以在GMM的基础上进行修改(玩计量的方法后面讲)。有人会问:简单回归会不会太简单?我只能说你真逗。STATA里面那么多选项,你加就是了。什么异方差、什么序列相关,一大堆尽管加。如果你实在无法确定是否有异方差和序列相关,那就把选项都加上。反正如果没有异方差,结果是一样的。有异方差,软件就自动给你纠正了。这不很爽嘛。如果样本太少,你还能加一个选项:bootstrap来估计方差。你看爽不爽!bootstrap就是自己把脚抬起来扛在肩上走路,就这么牛。这个bootstrap就是用30个样本能做到30万样本那样的效果。有吸引力吧。你说这个简单回归简单还是不简单!很简单,就是加选项。可是,要理论推导,就不简单了。我估计国内能推导的没几个人。那些一流期刊上论文作者,最多只有5%的人能推导,而且大部分是海龟。所以,你不需要会推导,也能把计量做的天花乱坠。工具变量(IV)回归,这不用说了,有内生性变量,就用这个吧。一旦有内生性变量,你的估计就有问题了。国际审稿人会拼了老命整死你。国内审稿人大部分不懂这东西(除了经济研究季刊等等这类刊物的部分审稿人以外)。工具变量的选择只要掌握一个关键点就行:找一个和内生性变量有数据相关的,但是和残差没有关系的东西,这就是你的IV了。例如贸易量如果是内生的,那么你找地理距离作为IV。北京到纽约的距离,那是自然形成的,没人认为是由你的Y或者残差导致的。但是你会发现贸易量和地理距离在数据上具有相关性。这就很好。这种数据相关性越强,IV的效果就越好。就这么一段话,IV变量回归就讲完了。在STATA里面,你直接把原回归方程写出来,然后把IV填进去就可以了,回车就得到你的结果。关键是你不一定能找到这样的工具变量。你能找到,这个工具也不大能用。不过要注意,IV不灵不代表你不能发表。你只要找到一个IV,效果不是差的太离谱,一般都能发。当然不能发国际一流了。国内是没问题。国内审稿人没人会重复你的结果看看是否有问题,因此你说这个IV效果已经是最好的了,世界上还找不到第二个比这个更好的了,审稿人也没的话说。就发表呗!如果审稿人说,另外一个IV效果可能要比你的好。那你就采纳他的建议用他的IV(尽管他的建议会更差),然后感谢他一下。第二次审稿,难道他还会说自己上次是胡说八道???所以就发表了,哈哈哈哈!有人又会问:面板不是还有个随机效应嘛?我只能说,你是看过书的人,所以才知道随机效应。其实随机效应压根就没什么用处。有人信誓旦旦说可以用hausman来检验。我只能告诉你,这检验压根就不可靠。可靠也是理论上可靠,实践上根本没人信。当然中国人都信,不信的都是美国欧洲这样的计量经济学家。你难道不知道hausman还会出现负值!做过这个检验的人都很头疼这个负值,不知道该怎么做。你如果看看一些高手的建议,或者一些书籍,你就会发现,最权威的建议就是:当你无法判断该用固定效应还是随机效应的时候,选择固定效应更可靠。随机效应不是任何时候都可以做,但是固定效应是任何时候都可以做。所以你知道该怎么做了吧。差分再差分(Difference-in-Differences),或者叫作差差分法、双差分法,是固定效应的一个变种,在估计某个事件发生带来的效应时最有用的方法,特简单。关键思想是通过差分的方法把相同的固定效应差分掉,就剩下来事件的净效应了。举一个例子你就明白怎么回事了。大家都知道买房子靠不靠学校医院等设施还是有很大差别的。ZF为了拉动某个地方的房价,直接把地铁建到那里。但是你不知道这种设施到底导致价格有多少差别。你看到学校旁边的学区房价格上升,难道一定是学区房因素导致的吗?北京房价一直飙升,很可能是学区房以外的因素导致的。现在你要检验一个假设:学区房因素导致房价上升。差分再差分,这个方法要凑效的秘诀是:学区房因素发生变化,而其他因素基本维持不变。例如ZF重新划分学区,一个著名小学突然在某个没学校的地方建分校,或者一个著名小学搬迁,这些因素导致房子是否属于学区房发生了变化。以建分校为例。建校后周围一片区域A的房子都属于学区房,这个区域以外附近区域(B)的其他房子就不算该校学区房。然后收集建校前后两个时间点上、A和B区域房价的数据。所谓的差分再差分法,就是:A区域两个时间点上的平均房价差距-B区域两时间点上的平均房价差距=d,这个d就是建校对房价的影响了。d是两个差距之间的差距,所以才叫做差分再差分。用计量回归把这个d给估计出来,是有办法的:——————P=b0+b1*Da+b2*Dt+d*(Da*Dt)+Xb+eP是房价,Da是虚拟变量,在区域A则为1,否则为

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功