第一公式:线性回归方程为ˆˆˆybxa的求法:(1)先求变量x的平均值,既1231()nxxxxxn(2)求变量y的平均值,既1231()nyyyyyn(3)求变量x的系数ˆb,有两个方法法1121()()ˆ()niiiniixxyybxx(题目给出不用记忆)112222212()()()()...()()()()...()nnnxxyyxxyyxxyyxxxxxx(需理解并会代入数据)法2121()()ˆ()niiiniixxyybxx(题目给出不用记忆)1122222212...,...nnnxyxyxynxyxxxnx(这个公式需要自己记忆,稍微简单些)(4)求常数ˆa,既ˆˆaybx最后写出写出回归方程ˆˆˆybxa。可以改写为:ˆˆybxa(ˆyy与不做区分)例.已知,xy之间的一组数据:x0123y1357求y与x的回归方程:解:(1)先求变量x的平均值,既1(0123)1.54x(2)求变量y的平均值,既1(1357)44y(3)求变量x的系数ˆb,有两个方法法1ˆb11223344222212342222()()()()()()()()()()()()(01.5)(14)(11.5)(34)(21.5)(54)(31.5)(74)57(01.5)(11.5)(21.5)(31.5)xxyyxxyyxxyyxxyyxxxxxxxx法2ˆb11222222222212...0113253741.5457...0123nnnxyxyxynxyxxxnx(4)求常数ˆa,既525ˆˆ41.577aybx最后写出写出回归方程525ˆˆˆ77ybxax第二公式:独立性检验两个分类变量的独立性检验:注意:数据a具有两个属性1x,1y。数据b具有两个属性1x,2y。数据c具有两个属性2x,2y数据d具有两个属性2x,2y而且列出表格是最重要。解题步骤如下第一步:提出假设检验问题(一般假设两个变量不相关)第二步:列出上述表格第三步:计算检验的指标22()()()()()nadbcKabcdacbd第四步:查表得出结论P(k2k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83例如你计算出2K9大于表格中7.879,则查表可得结论:两个变量之间不相关概率为0.005,或者可以肯定的说两个变量相关的概率为0.995.或095.50例如你计算出2K6大于表格中5.024,则查表可得结论:两个变量之间不相关概率为0.025,或者可以肯定的说两个变量相关的概率为0.995.或097.5013.(09·江苏理)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生1号2号3号4号5号甲组67787乙组67679则以上两组数据的方差中较小的一个为s2=______.1y2y总计1xabba2xcddc总计cadbdcba21.(本题满分12分)下表提供了某厂节能降耗技术改造后,生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据x3456y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y关于x的回归直线方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?4.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.5.有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:其中直径在区间[1.48,1.52]内的零件为一等品2nm1A2A10A编号1A2A3A4A5A6A7A8A9A10A(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率。6.以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差],)()()[(1222212xxxxxxnsn其中x为nxxx,,,21的平均数)7.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.直径1.511.491.491.511.491.511.471.461.531.47(I)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概8.某日用品按行业质量标准分成五个等级,等级系数X依次为1.2.3.4.5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X12345fa0.20.45bC(I)若所抽取的20件日用品中,等级系数为4的恰有4件,等级系数为5的恰有2件,求a、b、c的值;(11)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率。9.(2009广东).随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.10.(2010广东)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:w_w*w.k_s_5u.c*o*m(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?w.k#s5_u.co*m(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.w_w*w11.(2011广东)在某次测验中,有6位同学的平均成绩为75分。用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:编号n12345成绩xn7076727072(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率。13.(2013广东)从一批苹果中,随机抽取50只,其重量(单位:克)的频数分布表如下:分组(重量)80,8585,9090,9595,100频数(个)5102015(1)根据频数分布表计算苹果的重量在90,95的频率;(2)用分层抽样的方法从重量在80,85和95,100的苹果中共抽取4个,其中重量在80,85的有几个?(3)在(2)中抽出的4苹果中,任取2个,求重量在80,85和95,100中各有一个的概率.12.(2012广东)某学校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:60,50,70,60,80,70,90,80,100,90.(1)求图中a的值(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数x与数学成绩相应分数段的人数y之比如下表所示,求数学成绩在90,50之外的人数.分数段60,5070,6080,7090,80x:y1:12:13:44:5(19)根据以往统计资料,某地车主购买甲种保险的概率是0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地一位车主至少购买甲乙两种保险中的1中的概率.(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14151617181920频数10201616151310(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。18.(2013课标全国Ⅰ,文18)(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.61.22.71.52.81.82.22.33.23.52.52.61.22.71.52.93.03.12.32.4服用B药的20位患者日平均增加的睡眠时间:3.21.71.90.80.92.41.22.61.31.41.60.51.80.62.11.12.51.22.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?(19)(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出It该产品获利润500元,未售出的产品,每It亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t≤100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率.(18)(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民。根据这50位市民(Ⅰ)分别估计该市的市民对甲、乙部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙部门的评分做于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价。某超市计划按月订