第四章-电力系统潮流计算

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第四章电力系统潮流分析与计算电力系统潮流计算是电力系统稳态运行分析与控制的基础,同时也是安全性分析、稳定性分析电磁暂态分析的基础(稳定性分析和电磁暂态分析需要首先计算初始状态,而初始状态需要进行潮流计算)。其根本任务是根据给定的运行参数,例如节点的注入功率,计算电网各个节点的电压、相角以及各个支路的有功功率和无功功率的分布及损耗。潮流计算的本质是求解节点功率方程,系统的节点功率方程是节点电压方程乘以节点电压构成的。要想计算各个支路的功率潮流,首先根据节点的注入功率计算节点电压,即求解节点功率方程。节点功率方程是一组高维的非线性代数方程,需要借助数字迭代的计算方法来完成。简单辐射型网络和环形网络的潮流估算是以单支路的潮流计算为基础的。本章主要介绍电力系统的节点功率方程的形成,潮流计算的数值计算方法,包括高斯迭代法、牛顿拉夫逊法以及PQ解藕法等。介绍单电源辐射型网络和双端电源环形网络的潮流估算方法。4-1潮流计算方程--节点功率方程1.支路潮流所谓潮流计算就是计算电力系统的功率在各个支路的分布、各个支路的功率损耗以及各个节点的电压和各个支路的电压损耗。由于电力系统可以用等值电路来模拟,从本质上说,电力系统的潮流计算首先是根据各个节点的注入功率求解电力系统各个节点的电压,当各个节点的电压相量已知时,就很容易计算出各个支路的功率损耗和功率分布。假设支路的两个节点分别为k和l,支路导纳为kly,两个节点的电压已知,分别为kV和lV,如图4-1所示。图4-1支路功率及其分布那么从节点k流向节点l的复功率为(变量上面的“-”表示复共扼):)]([lkklkklkklVVyVIVS(4-1)从节点l流向节点k的复功率为:)]([klklllkllkVVyVIVS(4-2)功率损耗为:2)()(klkllkkllklkklklVyVVyVVSSS(4-3)因此,潮流计算的第一步是求解节点的电压和相位,根据电路理论,可以采用节点导纳方程求解各个节点的电压。2.节点功率方程根据电路理论,要想求系统各个节点的电压,需要利用系统的节点导纳方程。图4-2电网络示意图如图4-2所示的电网络,有N个节点,假如已知各个节点的注入电流源的电流,以及各个支路的支路导纳,那么可以根据节点导纳方程求出电网各个节点的电压:SIYV(4-4)其中NNNNNNYYYYYYYYY212222111211Y为电网络的节点导纳矩阵,kkY(Nk,2,1)为自导纳,是与k节点所有连接支路导纳之和,klY(lk)为互导纳,等于负的连接k和l节点的所有支路导纳之和。T21],,,[NVVVV为各个节点的电压相量,T,21],,,[NSSSSIIII为注入到各个节点的总电流。2.1节点复功率方程要想计算各个节点电压,除了需要知道系统参数及节点导纳矩阵以外,还需要知道节点的注入电流源的电流。然而电力系统中,节点的注入电流是不知道的,已知的是各个节点的注入功率。这就需要将节点电压方程转化为节点功率方程。方程4-4中第k(Nk,,2,1)个节点的方程可以写作:SkNkNkkkkkNllklIVYVYVYVYVY22111(4-5)在方程4-5两端乘以kV,得到:SkSkSkSkkNllklkjQPSIVVYV1(4-6)假如在电力系统中,各个节点的注入复功率都已知,那么就可以用方程4-6组成的方程组求解各个节点的电压。然而实际情况并非如此,已知的条件是:有的节点的注入复功率S是已知的,有的节点的电压幅值和注入有功功率是已知的,有的节点的电压和相角是已知的。根据这三种不同的情况,电力系统中各个节点分为三种类型:PQ节点、PV节点和V节点。所谓PQ节点,就是该节点的注入复功率S是已知的,这样的节点一般为中间节点或者是负荷节点。PV节点,指该节点已知的条件是注入节点的有功功率P和该节点的电压幅值V,这样的节点通常是发电机节点。V节点指的是该节点的电压幅值和相角是已知的,这样的节点通常是平衡节点,在每个局部电网中只有一个这样的节点。当然,PQ节点和PV节点在一定条件下还可以互相转化,例如,当发电机节点无法维持该节点电压时,发电机运行于功率极限时,发电机节点的有功和无功变成了已知量,而电压幅值则未知,此时,该节点由PV节点转化为PQ节点。再比如某个负荷节点,运行要求电压不能越限,当该节点的电压幅值处于极限位置,或者电力系统调压要求该节点的电压恒定,此时该负荷节点就由PQ节点转化为PV节点。假如全系统有N个节点,其中有M个PQ节点,N-M-1个PV节点,1个平衡节点,每个节点有四个参数:电压幅值V、相位角(用极坐标表示电压,如果用直角坐标表示电压相量则是e和f)注入有功功率SP和无功功率SQ,任何一个节点的四个参数中总有两个是已知的,因此N个节点,有2N个未知变量,N个复数方程(即2N个实数方程,实部和虚部各一个),通过解这个复数方程就可得到另外2N个参数。这就是潮流计算的本质。但在实际求解过程中,由于我们求解的对象是电压,因此,实际上不需要2N个功率方程,对于M个PQ节点,有2M个功率方程(M个实部有功功率方程,M个虚部无功功率方程);对于N-M-1个PV节点,由于电压有效值V已知,因此只有N-M-1个有功功率方程;对于平衡节点,由于电压和相角已知,不需要功率方程。因此总计有2M+N-M-1=N+M-1个功率方程。如果电压相量用极坐标表示,即kkkVV,则M个PQ节点有2M个未知数(M个电压有效值,M个电压相角),N-M-1个PV节点有N-M-1个未知数(电压有效值已知,未知数为电压相角),平衡节点没有未知数,因此未知数的个数也是N+M-1个,与方程数一致。如果复电压用直角坐标表示,kkkjfeV,则有2(N-1)个未知数,还需要增加N-M-1个电压方程,即222kkkfeV。2.2用直角坐标表示的电力系统节点功率方程对于PQ节点,已知的是注入节点的功率P和Q,将kmkmkmjBGY和kkkjfeV带入节点功率方程的复数表示式中,可以得到有功功率和无功功率两个方程:11111111)()()()(NmmkmmkmkNmmkmmkmkLkGkSkNmmkmmkmkNmmkmmkmkLkGkSkeBfGefBeGfQQQeBfGffBeGePPP(4-7)上式中SkP和SkQ为注入到节点k的净功率,即注入和消耗的代数和。GkP、GkQ表示注入的功率,LkP和LkQ为消耗的功率。对于PV节点,除了有功功率方程外,因为已知该节点的电压幅值,还有一个电压方程:222kkkfeV(4-8)方程4-7可以抽象的表示为:0),,,,(0),,,,(11111111NNkNNkfefeQfefeP(4-9)方程4-8可以抽象的表示为0),,,,(1111NNkfefeV(4-10)因此,对于一个具有N个节点的电力系统,其中M个PQ节点,N-M-1个PV节点,1个平衡节点,有方程如下:节点的方程个PQ2M0),,,,(0),,,,(0),,,,(0),,,,(111111111111111111NNMNNMNNNNfefeQfefePfefeQfefeP节点方程个PV1)-M-2(N0),,,,(0),,,,(0),,,,(0),,,,(11111111111111111111NNNNNNNNMNNMfefeVfefePfefeVfefeP(4-11)N个节点,平衡节点的电压幅值和相角已知,即其横分量和纵分量已知,因此平衡节点不参与计算。N-1个节点的电压的横分量和纵分量为未知数,共2N-2个未知数。2M个PQ节点方程,2(N-M-1)个PV节点方程,共计2N-2个方程。解这个方程组,就可以得到电力系统N个节点的电压相量,根据各个节点的电压相量和已知的注入功率,就可以计算出各个支路的潮流分布,及各个支路的功率损耗。2.3极坐标表示的节点功率方程对于PQ节点,已知的是注入节点的功率P和Q,将kmkmkmjBGY和kkkVV带入节点功率方程的复数表示式中,可以得到实部和虚部两个方程:NmkmkmkmkmmkLkGkSkNmkmkmkmkmmkLkGkSkBGVVQQQBGVVPPP11)cossin()sincos((4-12)上式中,V代表电压幅值,mkkm。对于PV节点,由于节点的电压幅值已知,因此只有有功功率方程而没有无功功率方程。同样,方程4-12可以抽象的表示为:0),,,,(111NMkVVP(4-13a)0),,,,(111NMkVVQ(4-13b)因此,对于一个具有N个节点的电力系统,其中M个PQ节点,N-M-1个PV节点,1个平衡节点,有方程如下:节点方程个PQ2M0),,,,,(0),,,,,(0),,,,,(0),,,,,(11111111111111NMMNMMNMNMVVQVVPVVQVVP节点方程个PV10),,,,,(0),,,,,(1111-N1111MMNVVPVVPNMNM(4-14)除了平衡节点外,N-1个节点中,有M个PQ节点的电压幅值和相角都是未知数,N-M-1个PV节点的相角为未知数,因此共有2M+N-M-1=N+M-1个未知数,2M+N-M-1=N+M-1个方程。在方程4-14中,可以把N-1个有功功率方程放在一起,M个无功功率方程放在一起:个有功功率方程1N0),,,,,(0),,,,,(11111111NMNNMVVPVVP个无功功率方程MVVQVVNMMNM0),,,,,(0),,,,,(Q1111111(4-15)解上述方程组,就可以得到电力系统中各个节点的电压幅值和相角,进而可以计算出各个支路的潮流分布和损耗。3.小结潮流计算是计算电力网各个支路的功率潮流分布和功率损耗,同时也计算各个支路的电压损耗。首先要求电力网各个节点的电压相量。根据电网络理论,节点电压通常采用节点导纳方程来求解,即已知电网络的节点导纳矩阵和各个节点的注入电流源的电流,求解节点导纳方程。然而通常电力系统各个节点的注入电流是未知的,已知的是各个节点的注入功率,因此需要将节点电压方程转化为节点功率方程。实际电力系统的节点注入功率并非都已知,有的已知注入有功功率P和无功功率Q称为PQ节点;有的已知注入有功功率P和节点电压有效值V,称为PV节点;有的已知节点电压V和相角d,称为平衡节点或V节点。无论哪种类型节点,每一个节点均含有4个参量P、Q、V、(或e、f)已知的是其中的两个,故而可以利用节点功率方程(4-6)求解出另外两个参量。假设系统有N个节点,必然有2N个未知数,同样有2N个节点功率方程(4-17中的实部和虚部各一个)。实际上,我们求解的目标是电压,对于PV节点和V节点来说,前者电压有效值已知,后者电压相量已知,因此不存在2N个未知数,当然也不需要2N个方程。假设系统有N个节点,M个PQ节点,1个平衡节点,对于直角坐标表示的节点电压来说,有2(N-1)个未知数,2M+N-M-1个功率方程,只需要再补充N-M-1个电压方程就可以了;对于极坐标表示的电压来说,只有N-1个未知数,M个V的未知数,因此只需要N+M-1个功率方程就足够了。无论怎样,潮流计算是解决这样的一组非线性代数方程组:0),,(UCXF(4-16

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功