第五章化学分析概论

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第五章分析化学概论制作:理学院化学系2第一节分析化学概述分析化学是研究物质化学组成、含量、结构的分析方法及有关理论的一门学科一、分析化学的任务和作用三个主要问题:体系中存在哪些物质?体系中物质的量是多少?这些物质的结构和存在形态是什么?定性分析定量分析结构分析结论:3二、分析化学的分类根据分析任务划分:定性分析定量分析结构分析根据分析对象划分:有机分析无机分析根据分析对象的含量划分:痕量分析常量分析半微量分析微量分析4分析方法名称常量分析半微量分析微量分析痕量分析按含量分1%0.01-1%0.01%按样品用量分固体试样质量(g)0.10.1~0.010.01~0.00010.0001液体试样体积(mL)1010~10.01~10.015根据分析原理划分:化学分析容量分析(滴定分析法)重量分析以物质的化学反应为基础的分析方法仪器分析物质的物理和物理化学性质为基础的分析方法,往往都需要特殊的仪器萤光分析、放射化学分析法等。光学分析法、电化学分析法色谱分析法、质谱分析法6根据分析的目的划分:例行分析一般化验室对日常生产中的原材料和产品而进行的分析快速分析是为控制生产过程提供信息。如炼钢时的炉前分析仲裁分析为了裁判不同单位对同一试样分析得出不同的测定结果,这时要求权威机构用公认的标准方法进行准确的分析7分析试样的制备缩分破碎过筛混匀试样每经过一次破碎后,使用机械或人工的方法取出一部分有代表性的试样,再进行下一步处理,将试样量逐渐缩小四分法注意事项:防止污染做好试样标签不能随意丢弃试样,均匀取舍8三、分析程序分析试样的采集:试样应具有代表性试样均匀:任意取一部分或稍加搅匀取其中的一部分。金属试样、水样、液态试样、气态试样、一些比较均匀的化工试样【包括:】试样分布不均匀:按一定的程序,根据经验,平均试样采取量矿石、煤炭、土壤等【包括:】M=K×daM--采取平均试样的最低质量(kg)d--试样中最大颗粒的直径(mm)K,a--经验常数,K值在0.02~0.15,a值在1.8~2.5;一般矿质样品a值取2。9试样的分解干化分解法湿法分解干扰组分的分离离子交换分离法。沉淀分离法溶剂萃取法色谱分离法测定方法的选择和分析测定主要考虑测定组分的准确度、灵敏度以及测定速度符合要求10实验数据处理和结果表达原则:数据记录必须实事求是实验数据记录必须有专用的记录本,要按一定记录规则,不能随意更改或丢弃数据的舍取要按统计学规则进行舍取11第二节定量分析误差的分类及表示方法一、定量分析误差的产生真实值(真值)XT:真实存在的值分析测定值X:由实验过程中采用某一种方法测得的值误差E:E=X-XT误差的分类:系统误差偶然误差12系统误差---由固定原因产生特点具单向性(大小、正负一定)可消除(原因固定)重复测定重复出现原因方法误差:因方法本身而产生试剂误差:试剂不纯或蒸馏水中含微量杂质仪器误差:天平、砝码、滴定管、容量瓶等刻度不准操作误差:操作人员的主观原因所造成的误差操作误差(个体差异)与操作过失(马虎大意)不同!13偶然误差(随机误差)---由一些随机的原因引起的,如实验时温度、电流、大气压等外界因素突然发生变化,仪器性能的微小波动等造成。特点:不具单向性(大小、正负不定)不可消除(原因不定)但可减小(增加测定次数)分布服从统计学规律(正态分布)操作过失14二、误差的表示方法---准确度(误差)、精密度(偏差)准确度:测定结果与“真值”接近的程度(用误差表示)绝对误差=X-XT相对误差=(X–XT)/XT×100%例:某一试样质量为1.8363g,称量值为1.8364g;另一试样质量为0.1835g,称量值为0.1836g。试样1:绝对误差=1.8364-1.8363=+0.0001相对误差=+0.0001/1.8363×100%=+0.005%试样2:绝对误差=0.1836-0.1835=+0.0001相对误差=+0.0001/0.1835×100%=+0.05%绝对误差相同时,相对误差可能不同!15精密度:平行测定的结果互相靠近的程度(用偏差表示)绝对偏差=Xi-X相对偏差=(Xi–X)/X【某次测定结果的偏差,只能反映该结果偏离平均值的程度,不能反映一组平行测定结果的精密度。】平均偏差12nddddn相对平均偏差()100%rddx绝对、相对偏差有正负;而平均、相对平均偏差为正值16当测定次数n小于20次时:标准偏差(又称均方根偏差):突出大的偏差对结果的影响222212()11inxxdddsnn相对标准偏差:%100%sCVx当测定次数n大于20次时(无限多次):总体标准偏差:2()ixn:总体平均值xs17例:数组1:+0.1,+0.4,0.0,-0.3,+0.2,-0.3,+0.2,-0.2,-0.4,+0.3数组2:-0.1,-0.2,+0.9,0.0,+0.1,+0.1,0.0,+0.1,-0.7,-0.2数组1:=0.20.0xs=0.3d数组2:0.0x=0.2ds=0.4【标准偏差能更好地反映出结果的精密度】两次平行测定时:相差=|x1-x2|相对相差=相差/平均值=|x1-x2|/x18测定某硅酸盐试样中SiO2的质量分数(%),五次平行测定结果为37.40,37.20,37.30,37.50,37.30。计算平均值,平均偏差,相对平均偏差,标准偏差和相对标准偏差。例1:解:19准确度与精密度的关系:1x2x3x4x1精密度高的不一定准确度好2准确度高必须以精密度好为前提3精密度是保证准确度的先决条件4精密度差,说明实验分析结果不可靠也就失去了衡量准确度的前提20第三节提高分析结果准确度的方法一、减少测量误差例:天平一次的称量误差为0.0001g,需读数二次,每次的称量误差为0.0001g,保证称量误差不超过±0.1%,计算最少称样量?称量:20.0001%100%0.1%REw0.2000wg2120VmL20.01%100%0.1%REV滴定:例:50mL滴定管刻度线的最小分度值为0.1mL,确定液面位置时,可在两刻度之间估计读至0.01mL,所以读数误差为±0.01mL,两次的读数误差为0.02mL,若相对误差不超过±0.1%,计算最少溶液体积?【由此可见,减少测量误差的方法是适当增加被测量物的量】22二、减少系统误差的方法a.用标准试样b.用已知的标准方法对照试验:---消除方法误差回收试验:---采用标准样加入法,用自己的分析方法,在同样条件下,测定分析试样的结果,再与未加标准样品的试样测定结果比较,可以检验是否存在方法误差。23空白试验:---消除试剂误差在不加试样的情况下,按照试样的分析步骤和条件而进行测定。其得到的结果叫空白值。在数据处理时,从分析结果中扣除。仪器校准:---消除仪器的误差定量分析实验所用的仪器,如滴定管、容量瓶、移液管、天平等都要进行校正。三、减少偶然误差的方法---增加平行测定次数,一般4-6次即可24第四节有限数据的统计处理一有效数字概念:---实际能测量到的分析数据组成:---所有确定的数字再加一位可疑的数字◆分析天平(称至0.1mg):12.8218g(6),0.2338g(4),◇千分之一天平(称至0.001g):0.234g(3)◇1%天平(称至0.01g):4.03g(3),0.23g(2)◇台秤(称至0.1g):4.0g(2),0.2g(1)★滴定管(量至0.01mL):26.32mL(4),3.97mL(3)★容量瓶:100.0mL(4),250.0mL(4)★移液管:25.00mL(4);☆量筒(量至1mL或0.1mL):25mL(2),4.0mL(2)质量体积25出现在第一位有效数字之前的零,不算有效数字0.02000L(4位),0.0280g(3位)出现在两个非零数字之间或所有非零数字之后,记入有效数字10.0400(6位)记录数据的时候不能将尾数的“0”任意增减0.10mL0.1mL改变单位,有效数字不变0.02000L20.00mL科学记数法表示有效数字较为明确数字后的0含义不清楚时,最好用指数形式表示:1000(1.0×103,1.00×103,1.000×103)零的有效数字计算26pH,pM,lgKӨ例:pH=11.02,两位有效数字,则[H+]=9.5×10-12---有效数字的位数取决于小数部分(尾数)数字的位数,整数部分只代表该数的方次有效数字修约规则:---四舍六入五留双例:要修约为四位有效数字时:尾数≤4时舍,0.52664-------0.5266尾数≥6时入,0.36266-------0.3627尾数=5时:a.若后面数全为0,舍5成双10.2350----10.24,250.650----250.6b.若5后面还有不是0的任何数皆入18.0850001---18.0927只能对数字进行一次修约例:6.549,2.451一次修约至两位有效数字6.52.5注意:有效数字计算规则:---先修约,后计算加减法:以小数点后位数最少的数为准(即以绝对误差最大的数为准)20.328.40540.0550?例:20.328.410.0628.6728乘除法:以有效数字位数最少的数为准(即以相对误差最大的数为准)例:0.021222.620.29215?0.021222.60.2921.64注意:①分数与倍数232(Fe)(Fe)(FeO)mwm2345(FeO)(KMnO)2nn2,5/2看成无限多位有效数字,最后结果以实验结果数据为准②误差只需保留1-2位③计算过程中可暂时多保留一位,留到下一步计算用第30-44页PPT主要内容(不做要求,不考)置信度与置信区间置信度:随机误差在不同区间内出现的概率置信区间:无限次测量的算术平均值的可能范围xuu=1.96时,100次测量,有95次落在x±1.96σ内显著性检验(略)判断同法不同人或同人不同法所分析结果之间的差异是偶然误差还是随机误差可疑值的取舍若平行测定的若干组数据中,有极大值或极小值,可采用Q检验法或G检验法来判断是否应该舍去30二、置信度与置信区间无限多次测定时:偶然误差的正态分布yfxex()()12222μ:无限次测量的总体均值,表示无限个数据的集中趋势(无系统误差时即为真值)σ:总体标准差,表示数据的离散程度x–μ:偶然误差12σσy:某一偏差出现的概率密度31测定值在总体平均值附近概率最大正负误差出现的几率相等小误差出现的次数多,大误差出现的次数少标准正态分布曲线()xu令221()2uyue注:u是以σ为单位来表示随机误差32()xu曲线y轴:概率密度值曲线下方的面积:随机误差出现的概率。曲线下方总面积=100%置信度(P):横坐标值在不同范围内正态分布曲线下的面积,即随机误差在不同区间内出现的概率置信区间:xuxu当u=±1时:可认为总体平均值μ有68.3%的置信度落在x±σ范围内。也可以理解为在1000次测定中,有683次测定值在μ±σ范围内。例:33标准正态分布置信度%1,1ux68.26%置信度分布情况:1.64,1.64ux90%1.96,1.96ux95%2.58,2.58ux2,2ux3,3ux95.5%99.0%99.7%34有限次测定时:---采用t分布进行处理。sut样本标准偏差S来代替总体标准偏差:()xntStSxn正态分布:P随u变化u一定,P一定t分布:P随t和f变化t一定,概率P与f有关1nfutf注:35某一t值时,测量值出现在μ±t·s范围内的概率置信度(置信水平)P:0.50

1 / 61
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功