上海市青浦区2018-2019学年初三下学期二模数学试卷(word版含详解答案)(2019.04.2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

九年级数学第1页共8页青浦区2018学年九年级第二次学业质量调研测试数学试卷2019.4(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.下列单项式中,与是同类项的是(▲)(A);(B);(C);(D).2.如果一次函数(k、b是常数,)的图像经过第一、二、三象限,那么k、b应满足的条件是(▲)(A)k0,且b0;(B)k0,且b0;(C)k0,且b0;(D)k0,且b0.3.抛物线的顶点坐标是(▲)(A)(1,1);(B)(-1,-1);(C)(1,-1);(D)(-1,1).4.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是(▲)(A)平均数;(B)中位数;(C)众数;(D)方差.5.下列图形中,是中心对称图形,但不是轴对称图形的是(▲)(A)平行四边形;(B)矩形;(C)菱形;(D)等腰梯形.6.如图1,在梯形ABCD中,AD//BC,∠B=90°,AD=2,AB=4,BC=6.点O是边BC上一点,以O为圆心,OC为半径的⊙O,与边AD只有一个公共点时,则OC的取值范围是(▲)(A)1343OC;(B)1343OC;(C)1443OC;(D)1443OC.二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.计算:▲.8.在实数范围内分解因式:▲.9.如果二次根式有意义,那么x的取值范围是▲.10.方程的解是▲.11.如果关于x的方程有两个相等的实数根,那么实数m的值是▲.图1DABC九年级数学第2页共8页12.已知反比例函数(),如果在这个函数图像所在的每一个象限内,y的值随着x的值增大而增大,那么k的取值范围是▲.13.将分别写有“创建”、“智慧”、“校园”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建智慧校园”的概率是▲.14.A班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图如图2所示,那么成绩高于60分的学生占A班参赛人数的百分率为▲.15.如图3,△ABC的中线AD、BE相交于点G,若,,用a、b表示▲.16.如图4,在⊙O中,OA、OB为半径,联结AB,已知AB=6,∠AOB=120°,那么圆心O到AB的距离为▲.17.如图5,在矩形ABCD中,AB=3,E为AD的中点,F为CD上一点,且DF=2CF,沿BE将△ABE翻折,如果点A恰好落在BF上,则AD=▲.18.我们把满足某种条件的所有点组成的图形,叫做符合这个条件的点的轨迹.如图6,在Rt△ABC中,∠C=90°,AC=8,BC=12,动点P从点A开始沿射线AC方向以1个单位/秒的速度向点C运动,动点Q从点C开始沿射线CB方向以2个单位/秒的速度向点B运动,P、Q两点分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,在整个运动过程中,线段PQ的中点M运动的轨迹长为▲.三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(本题满分10分)计算:.20.(本题满分10分)解方程组:21.(本题满分10分,第(1)、(2)小题,每小题5分)如图7,在△ABC中,∠C=90°,AB的垂直平分线分别交边BC、AB于点D、E,联结AD.(1)如果∠CAD∶∠DAB=1∶2,求∠CAD的度数;(2)如果AC=1,,求∠CAD的正弦值.22.(本题满分10分)①②226021.xxyyxy;754298631学生数分数100.590.580.570.560.550.540.5图2GEDABC图3BAO图4CBAPQM图6DABC图5EDABC图7九年级数学第3页共8页如图8,一座古塔AH的高为33米,AH⊥直线l.某校九年级数学兴趣小组为了测得该古塔塔刹AB的高,在直线l上选取了点D,在D处测得点A的仰角为26.6°,测得点B的仰角为22.8°,求该古塔塔刹AB的高.(精确到0.1米)(参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.5,sin22.8°=0.39,cos22.8°=0.92,tan22.8°=0.42)23.(本题满分12分,第(1)、(2)小题,每小题6分)已知:如图9,在菱形ABCD中,AB=AC,点E、F分别在边AB、BC上,且AE=BF,CE与AF相交于点G.(1)求证:∠FGC=∠B;(2)延长CE与DA的延长线交于点H,求证:BECHAFAC.24.(本题满分12分,每小题满分各4分)已知:如图10,在平面直角坐标系xOy中,抛物线()经过点A(6,-3),对称轴是直线x=4,顶点为B,OA与其对称轴交于点M,M、N关于点B对称.(1)求这条抛物线的表达式和点B的坐标;(2)联结ON、AN,求△OAN的面积;(3)点Q在x轴上,且在直线x=4右侧,当∠ANQ=45°时,求点Q的坐标.GFEDABC图9lABDH图8图10yxMNABO九年级数学第4页共8页25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中点.以CD为直径的⊙Q分别交BC、BA于点F、E,点E位于点D下方,联结EF交CD于点G.(1)如图11,如果BC=2,求DE的长;(2)如图12,设BC=x,=GDyGQ,求y关于x的函数关系式及其定义域;(3)如图13,联结CE,如果CG=CE,求BC的长.图11QCBADEFG图13QCBADEFG图12FEDABCGQ九年级数学第5页共8页青浦区2018学年九年级第二次学业质量调研测试评分参考一、选择题:1.C;2.A;3.B;4.D;5.A;6.B.二、填空题:7.68x;8.+33aaa;9.3x;10.2x;11.1;12.0k;13.16;14.77.5%;15.1136ab;16.3;17.26;18.35.三、解答题:19.解:原式=121+2+1+9.·························································(8分)=10.····················································································(2分)20.解:由①得+30xy或20xy.·························································(2分)原方程组可化为3021.,xyxy或2021.,xyxy·········································(4分)解得原方程的解是113515,;xy222515,.xy···············································(4分)21.解:(1)∵DE垂直平分AB,∴DA=DB,············································································(1分)∴∠DAB=∠B.········································································(1分)∵∠CAD∶∠DAB=1∶2,∴∠B=2∠CAD,······································································(1分)∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,·······················································(1分)∴5∠CAD=90°,∴∠CAD=18°.·······································································(1分)(2)∵∠C=90°,AC=1,1tan2B,∴BC=2.···············································································(1分)设DB=x,则DA=x,CD=2x,∵∠C=90°,∴222ACCDAD,∴2212xx.················(1分)解得54x,·········································································(1分)∴CD=34,············································································(1分)∴334sin554CDCADAD.··················································(1分)九年级数学第6页共8页22.解:由题意,得∠ADH=26.6°,∠BDH=22.8°,AH=33.·······························(1分)在Rt△AHD中,∵tanAHADHHD,∴33tan26.6HD,∴33660.5HD.···········(4分)在Rt△BHD中,∵tanBHBDHHD,∴tan22.866BH,∴0.426627.7HB.··(4分)∵ABAHBH,∴3327.75.3AB.···································(1分)答:该古塔塔刹AB的高约为5.3米.23.证明:(1)∵四边形ABCD是菱形,∴AB=BC.···········································································(1分)∵AB=AC,∴AB=BC=AC,∴∠B=∠BAC=60°.···························(1分)在△EAC与△FBA中,∵EA=FB,∠EAC=∠FBA,AC=BA,∴△EAC≌△FBA,································································(1分)∴∠ACE=∠BAF,·································································(1分)∵∠BAF+∠FAC=60°,∴∠ACE+∠FAC=60°,∴∠FGC=60°,······(1分)∴∠FGC=∠B.····································································(1分)(2)∵四边形ABCD是菱形,∴∠B=∠D,AB=DC,AB//DC,···············································(1分)∴∠BEC=∠HCD,································································(1分)∴△BEC∽△DCH,································

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功