基于深度学习的目标检测研究进展开始本文内容之前,我们先来看一下上边左侧的这张图,从图中你看到了什么物体?他们在什么位置?这还不简单,图中有一个猫和一个人,具体的位置就是上图右侧图像两个边框(bounding-box)所在的位置。其实刚刚的这个过程就是目标检测,目标检测就是“给定一张图像或者视频帧,找出其中所有目标的位置,并给出每个目标的具体类别”。目标检测对于人来说是再简单不过的任务,但是对于计算机来说,它看到的是一些值为0~255的数组,因而很难直接得到图像中有人或者猫这种高层语义概念,也不清楚目标出现在图像中哪个区域。图像中的目标可能出现在任何位置,目标的形态可能存在各种各样的变化,图像的背景千差万别……,这些因素导致目标检测并不是一个容易解决的任务。得益于深度学习——主要是卷积神经网络(convolutionneuralnetwork:CNN)和候选区域(regionproposal)算法,从2014年开始,目标检测取得了巨大的突破。本文主要对基于深度学习的目标检测算法进行剖析和总结,文章分为四个部分:第一部分大体介绍下传统目标检测的流程,第二部分介绍以R-CNN为代表的结合regionproposal和CNN分类的目标检测框架(R-CNN,SPP-NET,FastR-CNN,FasterR-CNN);第三部分介绍以YOLO为代表的将目标检测转换为回归问题的目标检测框架(YOLO,SSD);第四部分介绍一些可以提高目标检测性能的技巧和方法。一.传统目标检测方法原创2016-05-30深度学习大讲堂深度学习大讲堂如上图所示,传统目标检测的方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,昀后使用训练的分类器进行分类。下面我们对这三个阶段分别进行介绍。(1)区域选择这一步是为了对目标的位置进行定位。由于目标可能出现在图像的任何位置,而且目标的大小、长宽比例也不确定,所以昀初采用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的尺度,不同的长宽比。这种穷举的策略虽然包含了目标所有可能出现的位置,但是缺点也是显而易见的:时间复杂度太高,产生冗余窗口太多,这也严重影响后续特征提取和分类的速度和性能。(实际上由于受到时间复杂度的问题,滑动窗口的长宽比一般都是固定的设置几个,所以对于长宽比浮动较大的多类别目标检测,即便是滑动窗口遍历也不能得到很好的区域)(2)特征提取由于目标的形态多样性,光照变化多样性,背景多样性等因素使得设计一个鲁棒的特征并不是那么容易。然而提取特征的好坏直接影响到分类的准确性。(这个阶段常用的特征有SIFT、HOG等)(3)分类器主要有SVM,Adaboost等。总结:传统目标检测存在的两个主要问题:一个是基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余;二是手工设计的特征对于多样性的变化并没有很好的鲁棒性。二.基于RegionProposal的深度学习目标检测算法对于传统目标检测任务存在的两个主要问题,我们该如何解决呢?对于滑动窗口存在的问题,regionproposal提供了很好的解决方案。regionproposal(候选区域)是预先找出图中目标可能出现的位置。但由于regionproposal利用了图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率。这大大降低了后续操作的时间复杂度,并且获取的候选窗口要比滑动窗口的质量更高(滑动窗口固定长宽比)。比较常用的regionproposal算法有selectiveSearch和edgeBoxes,如果想具体了解regionproposal可以看一下PAMI2015的“Whatmakesforeffectivedetectionproposals?”有了候选区域,剩下的工作实际就是对候选区域进行图像分类的工作(特征提取+分类)。对于图像分类,不得不提的是2012年ImageNet大规模视觉识别挑战赛(ILSVRC)上,机器学习泰斗GeoffreyHinton教授带领学生Krizhevsky使用卷积神经网络将ILSVRC分类任务的Top-5error降低到了15.3%,而使用传统方法的第二名top-5error高达26.2%。此后,卷积神经网络占据了图像分类任务的绝对统治地位,微软昀新的ResNet和谷歌的InceptionV4模型的top-5error降到了4%以内多,这已经超越人在这个特定任务上的能力。所以目标检测得到候选区域后使用CNN对其进行图像分类是一个不错的选择。2014年,RBG(RossB.Girshick)大神使用regionproposal+CNN代替传统目标检测使用的滑动窗口+手工设计特征,设计了R-CNN框架,使得目标检测取得巨大突破,并开启了基于深度学习目标检测的热潮。21.R-CNN(CVPR2014,TPAMI2015)(Region-basedConvolutionNetworksforAccurateObjectdetectionandSegmentation)上面的框架图清晰的给出了R-CNN的目标检测流程:(1)输入测试图像(2)利用selectivesearch算法在图像中提取2000个左右的regionproposal。(3)将每个regionproposal缩放(warp)成227x227的大小并输入到CNN,将CNN的fc7层的输出作为特征。(4)将每个regionproposal提取到的CNN特征输入到SVM进行分类。针对上面的框架给出几点解释:*上面的框架图是测试的流程图,要进行测试我们首先要训练好提取特征的CNN模型,以及用于分类的SVM:使用在ImageNet上预训练的模型(AlexNet/VGG16)进行微调得到用于特征提取的CNN模型,然后利用CNN模型对训练集提特征训练SVM。*对每个regionproposal缩放到同一尺度是因为CNN全连接层输入需要保证维度固定。*上图少画了一个过程——对于SVM分好类的regionproposal做边框回归(bounding-boxregression),边框回归是对regionproposal进行纠正的线性回归算法,为了让regionproposal提取到的窗口跟目标真实窗口更吻合。因为regionproposal提取到的窗口不可能跟人手工标记那么准,如果regionproposal跟目标位置偏移较大,即便是分类正确了,但是由于IoU(regionproposal与GroundTruth的窗口的交集比并集的比值)低于0.5,那么相当于目标还是没有检测到。小结:R-CNN在PASCALVOC2007上的检测结果从DPMHSC的34.3%直接提升到了66%(mAP)。如此大的提升使我们看到了regionproposal+CNN的巨大优势。但是R-CNN框架也存在着很多问题:(1)训练分为多个阶段,步骤繁琐:微调网络+训练SVM+训练边框回归器(2)训练耗时,占用磁盘空间大:5000张图像产生几百G的特征文件(3)速度慢:使用GPU,VGG16模型处理一张图像需要47s。针对速度慢的这个问题,SPP-NET给出了很好的解决方案。31.SPP-NET(ECCV2014,TPAMI2015)(SpatialPyramidPoolinginDeepConvolutionalNetworksforVisualRecognition)先看一下R-CNN为什么检测速度这么慢,一张图都需要47s!仔细看下R-CNN框架发现,对图像提完regionproposal(2000个左右)之后将每个proposal当成一张图像进行后续处理(CNN提特征+SVM分类),实际上对一张图像进行了2000次提特征和分类的过程!有没有方法提速呢?好像是有的,这2000个regionproposal不都是图像的一部分吗,那么我们完全可以对图像提一次卷积层特征,然后只需要将regionproposal在原图的位置映射到卷积层特征图上,这样对于一张图像我们只需要提一次卷积层特征,然后将每个regionproposal的卷积层特征输入到全连接层做后续操作。(对于CNN来说,大部分运算都耗在卷积操作上,这样做可以节省大量时间)。现在的问题是每个regionproposal的尺度不一样,直接这样输入全连接层肯定是不行的,因为全连接层输入必须是固定的长度。SPP-NET恰好可以解决这个问题:上图对应的就是SPP-NET的网络结构图,任意给一张图像输入到CNN,经过卷积操作我们可以得到卷积特征(比如VGG16昀后的卷积层为conv5_3,共产生512张特征图)。图中的window是就是原图一个regionproposal对应到特征图的区域,只需要将这些不同大小window的特征映射到同样的维度,将其作为全连接的输入,就能保证只对图像提取一次卷积层特征。SPP-NET使用了空间金字塔采样(spatialpyramidpooling):将每个window划分为4*4,2*2,1*1的块,然后每个块使用max-pooling下采样,这样对于每个window经过SPP层之后都得到了一个长度为(4*4+2*2+1)*512维度的特征向量,将这个作为全连接层的输入进行后续操作。小结:使用SPP-NET相比于R-CNN可以大大加快目标检测的速度,但是依然存在着很多问题:(1)训练分为多个阶段,步骤繁琐:微调网络+训练SVM+训练训练边框回归器(2)SPP-NET在微调网络的时候固定了卷积层,只对全连接层进行微调,而对于一个新的任务,有必要对卷积层也进行微调。(分类的模型提取的特征更注重高层语义,而目标检测任务除了语义信息还需要目标的位置信息)针对这两个问题,RBG又提出FastR-CNN,一个精简而快速的目标检测框架。41.FastR-CNN(ICCV2015)有了前边R-CNN和SPP-NET的介绍,我们直接看FastR-CNN的框架图:与R-CNN框架图对比,可以发现主要有两处不同:一是昀后一个卷积层后加了一个ROIpoolinglayer,二是损失函数使用了多任务损失函数(multi-taskloss),将边框回归直接加入到CNN网络中训练。(1)ROIpoolinglayer实际上是SPP-NET的一个精简版,SPP-NET对每个proposal使用了不同大小的金字塔映射,而ROIpoolinglayer只需要下采样到一个7x7的特征图。对于VGG16网络conv5_3有512个特征图,这样所有regionproposal对应了一个7*7*512维度的特征向量作为全连接层的输入。(2)R-CNN训练过程分为了三个阶段,而FastR-CNN直接使用softmax替代SVM分类,同时利用多任务损失函数边框回归也加入到了网络中,这样整个的训练过程是端到端的(除去regionproposal提取阶段)。(3)FastR-CNN在网络微调的过程中,将部分卷积层也进行了微调,取得了更好的检测效果。小结:FastR-CNN融合了R-CNN和SPP-NET的精髓,并且引入多任务损失函数,使整个网络的训练和测试变得十分方便。在PascalVOC2007训练集上训练,在VOC2007测试的结果为66.9%(mAP),如果使用VOC2007+2012训练集训练,在VOC2007上测试结果为70%(数据集的扩充能大幅提高目标检测性能)。使用VGG16每张图像总共需要3s左右。缺点:regionproposal的提取使用selectivesearch,目标检测时间大多消耗在这上面(提regionproposal2~3s,而提特征分类只需0.32s),无法满足实时应用,而且并没有实现真正意义上的端到端训练测试(regionproposal使用selectivesearch先提取处来)。那么有没有可能直接使用CNN直接产生regionproposal并对其分类?FasterR-CNN框架就是符合这样需要的目标检测框架。51.FasterR-CN