概率论与数理统计(第四版)简明本浙江大学盛骤2020/4/281•改编:王琢(sylu)概率论与数理统计是研究随机现象数量规律的一门学科。23第一章概率论的基本概念•1.1随机试验•1.2样本空间•1.3概率和频率•1.4等可能概型(古典概型)•1.5条件概率•1.6独立性第二章随机变量及其分布•2.1随机变量•2.2离散型随机变量及其分布•2.3随机变量的分布函数•2.4连续型随机变量及其概率密度•2.5随机变量的函数的分布第三章多维随机变量及其分布•3.1二维随机变量•3.2边缘分布•3.3条件分布•3.4相互独立的随机变量•3.5两个随机变量的函数的分布4第四章随机变量的数字特征•4.1数学期望•4.2方差•4.3协方差及相关系数•4.4矩、协方差矩阵第五章大数定律和中心极限定理•5.1大数定律•5.2中心极限定理第六章数理统计的基本概念•6.1总体和样本•6.2常用的分布5第七章参数估计•7.1参数的点估计•7.2估计量的评选标准•7.3区间估计第八章假设检验•8.1假设检验•8.2正态总体均值的假设检验•8.3正态总体方差的假设检验•8.4置信区间与假设检验之间的关系•8.5样本容量的选取•8.6分布拟合检验•8.7秩和检验第九章方差分析及回归分析•9.1单因素试验的方差分析•9.2双因素试验的方差分析•9.3一元线性回归•9.4多元线性回归概率论第一章概率论的基本概念67关键词:样本空间随机事件频率和概率条件概率事件的独立性第一章概率论的基本概念8§1随机试验确定性现象:结果确定不确定性现象:结果不确定确定性现象不确定性现象——确定——不确定——不确定自然界与社会生活中的两类现象例:向上抛出的物体会掉落到地上明天天气状况买了彩票会中奖9概率统计中研究的对象:随机现象的数量规律对随机现象的观察、记录、试验统称为随机试验。它具有以下特性:1.可以在相同条件下重复进行2.事先知道可能出现的结果3.进行试验前并不知道哪个试验结果会发生例:抛一枚硬币,观察试验结果;对某路公交车某停靠站登记下车人数;对某批电子产品测试其输入电压;对听课人数进行一次登记;10§2样本空间·随机事件(一)样本空间定义:随机试验E的所有结果构成的集合称为E的样本空间,记为S={e},称S中的元素e为基本事件或样本点.S={0,1,2,…};S={正面,反面};S={(x,y)|T0≤y≤x≤T1};S={x|a≤x≤b}记录一城市一日中发生交通事故次数例:一枚硬币抛一次记录某地一昼夜最高温度x,最低温度y记录一批产品的寿命x11(二)随机事件一般我们称S的子集A为E的随机事件A,当且仅当A所包含的一个样本点发生,称事件A发生。记A={至少有10人候车}={10,11,12,…}S,A为随机事件,A可能发生,也可能不发生。S={0,1,2,…};例:观察89路公交车浙大站候车人数,如果将S亦视作事件,则每次试验S总是发生,故又称S为必然事件。为方便起见,记Φ为不可能事件,Φ不包含任何样本点。12(三)事件的关系及运算事件的关系(包含、相等)例:记A={明天天晴},B={明天无雨}记A={至少有10人候车},B={至少有5人候车}一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}2ABABBA=1ABAB:事件发生一定导致发生BABABASAB13事件的运算{|}ABxxAxBAB或:与至少有一发生。121121,,,,ninininiAAAAAAAA:至少有一发生:同时发生SBASABSBAABA与B的和事件,记为,,ABABABA与B的积事件,记为{|}ABxxAxBAB且:与同时发生。当AB=Φ时,称事件A与B不相容的,或互斥的。14“和”、“交”关系式1211nniiniiAAAAA=;1211nniiniiAAAAA;ABABABABABABSABASA{|}ABABxxAxB且,,AASABSAAABABAA的记为,逆事件互若,称逆、互斥例:设A={甲来听课},B={乙来听课},则:{甲、乙至少有一人来}{甲、乙都来}{甲、乙都不来}{甲、乙至少有一人不来}例:中国国家足球队,“冲击亚洲”共进行了n次,其中成功了一次,则在这n次试验中“冲击亚洲”这事件发生的频率为某人一共听了17次“概率统计”课,其中有15次迟到,记A={听课迟到},则#频率反映了事件A发生的频繁程度。15§3频率与概率(一)频率定义:记其中—A发生的次数(频数);n—总试验次数。称为A在这n次试验中发生的频率。An()nAfAnn;()nfA1n;()151788%nfA()nfA试验序号n=5n=50n=500nHfn(H)nHfn(H)nHfn(H)1234567891023151242330.40.60.21.00.20.40.80.40.60.6222521252421182427310.440.500.420.500.480.420.360.480.540.622512492562532512462442582622470.5020.4980.5120.5060.5020.4920.4880.5160.5240.494表1例:抛硬币出现的正面的频率17实验者nnHfn(H)德·摩根204810610.5181蒲丰404020480.5069K·皮尔逊1200060190.5016K·皮尔逊24000120120.5005表218**频率的性质:且随n的增大渐趋稳定,记稳定值为p.()nfA121110()12()13,()()nnkkkniniiifAfSAAAfAfA。。。若,…,两两互不相容,则19(二)概率定义1:的稳定值p定义为A的概率,记为P(A)=p定义2:将概率视为测度,且满足:称P(A)为事件A的概率。()nfA10()1PA。2()1PS。12113,()()kkkiiiiAAAPAPA。若,…,两两互不相容,则202()()()()()ABPBAPBPAPBPA,若则有3()()()()PABPAPBPAB概率的加法公式:1()1()PAPA性质:AAS()()1PAPA()0PBAAB()()()PBPAPAB()()()()0PBPAPABPBA()()PBPA()ABABAB()()()PABPAPBAB2()()()BABPBABPBPAB。又,由知()()()()PABPAPBPAB#3。的推广:1111121()()()()(1)()nniiijiijninijknijknPAPAPAAPAAAPAAA()0()1PAAPAAS不能;不能;21§4等可能概型(古典概型)定义:若试验E满足:1.S中样本点有限(有限性)2.出现每一样本点的概率相等(等可能性)APAS所包含的样本点数中的样本点数称这种试验为等可能概型(或古典概型)。22例1:一袋中有8个球,编号为1-8,其中1-3号为红球,4-8号为黄球,设摸到每一球的可能性相等,从中随机摸一球,记A={摸到红球},求P(A).解:S={1,2,…,8}A={1,2,3}38PA例3:有N件产品,其中D件是次品,从中不放回的取n件,记Ak={恰有k件次品},求P(Ak).解:称为超几何分布。23例2:从上例的袋中不放回的摸两球,记A={恰是一红一黄},求P(A).解:11235815()/53.6%28PACCC()/,0,1,,knknkDNDNPACCCkn0LmC(注:当Lm或L0时,记)24例4:将n个不同的球,投入N个不同的盒中(n≤N),设每一球落入各盒的概率相同,且各盒可放的球数不限,记A={恰有n个盒子各有一球},求P(A).解:n12N①②……②12N①②①12N①②12N……!nNCn()!/nnNPACnN()1!/0.997nnNPACnN即当n=2时,共有N2个样本点;一般地,n个球放入N个盒子中,总样本点数为Nn,使A发生的样本点数可解析为一个64人的班上,至少有两人在同一天过生日的概率为99.7%.若取n=64,N=36525例5:一单位有5个员工,一星期共七天,老板让每位员工独立地挑一天休息,求不出现至少有2人在同一天休息的概率。解:将5为员工看成5个不同的球,7天看成7个不同的盒子,记A={无2人在同一天休息},则由上例知:5755!3.7%7CPA26例6:(抽签问题)一袋中有a个白球,b个红球,记a+b=n。K个人依次在袋中取一只球,(1)作放回抽样;(2)作不放回抽样,求第i(i=1,2,…,k)次取到白球(记为事件B)的概率(k=a+b)。解:(1)放回抽样,显然有P(B)=a/(a+b).(2)不放回抽样,各人取一只球,每种取法是一个基本事件。共有P(k,a+b)个基本事件,且由对称性知每个基本事件发生的可能性相同。当事件B发生时,第i人取的是白球,有a种取法。其余被取的k-1只可以是其余a+b-1只球中的任意k-1只,共有P(k-1,a+b-1)种取法。于是P(B)=a*P(k-1,a+b-1)/P(k,a+b)=a/(a+b).可见,抓阄问题中,放回和不放回是一样公平的。与k无关。27解:假设接待站的接待时间没有规定,而各来访者在一周的任一天中去接待站是等可能的,那么,12次接待来访者都是在周二、周四的概率为212/712=0.0000003.例7:某接待站在某一周曾接待12次来访,已知所有这12次接待都是在周二和周四进行的,问是否可以推断接待时间是有规定的?人们在长期的实践中总结得到“概率很小的事件在一次试验中实际上几乎是不发生的”(称之为实际推断原理)。现在概率很小的事件在一次试验中竟然发生了,因此有理由怀疑假设的正确性,从而推断接待站不是每天都接待来访者,即认为其接待时间是有规定的。§5条件概率例:有一批产品,其合格率为90%,合格品中有95%为优质品,从中任取一件,记A={取到一件合格品},B={取到一件优质品}。则P(A)=90%而P(B)=85.5%记:P(B|A)=95%1.P(A)=0.90是将整批产品记作1时A的测度2.P(B|A)=0.95是将合格品记作1时B的测度3.由P(B|A)的意义,其实可将P(A)记为P(A|S),而这里的S常常省略而已,P(A)也可视为条件概率分析:设试验的基本事件数为n,A包含的基本事件数为m,AB包含的基本事件数为k,即有P(B|A)=k/m=(k/n)/(m/n)=P(AB)/P(A).29一、条件概率定义:由上面讨论知,P(B|A)应具有概率的所有性质。例如:(|)1(|)PBAPBA(|)(|)(|)(|)PBCAPBAPCAPBCABC(|)(|)PBAPCA()()(|)()(|)PABPAPBAPBPAB()()(|)(|)PABCPAPBAPCAB1212131211()()(|)(|)(|)nnnPAAAPAPAAPAAAPAAA()(|)()PABPBAPA()0PA二、乘法公式当下面的条件概率都有意义时:30例:某厂生产的产品能直接出厂的概率为70%,余下的30%的产品要调试后再定,已知调试后有80%的产品可以出厂,20%的产品要报废。求该厂产品的报废率。(|)0PAB()()PAPABAB()(|)()(|)PBPABPBPAB0.30.20.706%AB∵AB与不相容利用乘法公式()()PABPAB解:设A={生产的产品要报废}B={生产的产品要调试}已知P(B)=0.3,P(A|B)=0.2,,,()()()()0