第一章质点运动学和牛顿运动定律1.1平均速度v=t△△r1.2瞬时速度v=lim0△t△t△r=dtdr1.3速度v=dtdslimlim0△t0△t△t△r1.6平均加速度a=△t△v1.7瞬时加速度(加速度)a=lim0△t△t△v=dtdv1.8瞬时加速度a=dtdv=22dtrd1.11匀速直线运动质点坐标x=x0+vt1.12变速运动速度v=v0+at1.13变速运动质点坐标x=x0+v0t+21at21.14速度随坐标变化公式:v2-v02=2a(x-x0)1.15自由落体运动1.16竖直上抛运动gyvatygtv22122gyvvgttvygtvv2212022001.17抛体运动速度分量gtavvavvyxsincos001.18抛体运动距离分量20021sincosgttavytavx1.19射程X=gav2sin201.20射高Y=gav22sin201.21飞行时间y=xtga—ggx21.22轨迹方程y=xtga—avgx2202cos21.23向心加速度a=Rv21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=at+an1.25加速度数值a=22ntaa1.26法向加速度和匀速圆周运动的向心加速度相同an=Rv21.27切向加速度只改变速度的大小at=dtdv1.28ωΦRdtdRdtdsv1.29角速度dtφωd1.30角加速度22dtdtddφωα1.31角加速度a与线加速度an、at间的关系an=222)(ωωRRRRvat=αωRdtdRdtdv牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。牛顿第二定律:物体受到外力作用时,所获得的加速度a的大小与外力F的大小成正比,与物体的质量m成反比;加速度的方向与外力的方向相同。1.37F=ma牛顿第三定律:若物体A以力F1作用与物体B,则同时物体B必以力F2作用与物体A;这两个力的大小相等、方向相反,而且沿同一直线。万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线1.39F=G221rmmG为万有引力称量=6.67×10-11Nm2/kg21.40重力P=mg(g重力加速度)1.41重力P=G2rMm1.42有上两式重力加速度g=G2rM(物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变)1.43胡克定律F=—kx(k是比例常数,称为弹簧的劲度系数)1.44最大静摩擦力f最大=μ0N(μ0静摩擦系数)1.45滑动摩擦系数f=μN(μ滑动摩擦系数略小于μ0)第二章守恒定律2.1动量P=mv2.2牛顿第二定律F=dtdPdtmvd)(2.3动量定理的微分形式Fdt=mdv=d(mv)F=ma=mdtdv2.421ttFdt=21)(vvmvd=mv2-mv12.5冲量I=21ttFdt2.6动量定理I=P2-P12.7平均冲力F与冲量I=21ttFdt=F(t2-t1)2.9平均冲力F=12ttI=1221ttFdttt=1212ttmvmv2.12质点系的动量定理(F1+F2)△t=(m1v1+m2v2)—(m1v10+m2v20)左面为系统所受的外力的总动量,第一项为系统的末动量,二为初动量2.13质点系的动量定理:niniiiniiiivmvmtF1101△作用在系统上的外力的总冲量等于系统总动量的增量2.14质点系的动量守恒定律(系统不受外力或外力矢量和为零)niiivm1=niiivm10=常矢量2.16mvRRpL圆周运动角动量R为半径2.17mvddpL非圆周运动,d为参考点o到p点的垂直距离2.18sinmvrL同上2.21sinFrFdMF对参考点的力矩2.22FrM力矩2.24dtdLM作用在质点上的合外力矩等于质点角动量的时间变化率2.26常矢量LdtdL0如果对于某一固定参考点,质点(系)所受的外力矩的矢量和为零,则此质点对于该参考点的角动量保持不变。质点系的角动量守恒定律2.28iiirmI2刚体对给定转轴的转动惯量2.29IM(刚体的合外力矩)刚体在外力矩M的作用下所获得的角加速度a与外合力矩的大小成正比,并于转动惯量I成反比;这就是刚体的定轴转动定律。2.30vmdvrdmrI22转动惯量(dv为相应质元dm的体积元,p为体积元dv处的密度)2.31IL角动量2.32dtdLIaM物体所受对某给定轴的合外力矩等于物体对该轴的角动量的变化量2.33dLMdt冲量距2.340000IILLdLMdtLLtt2.35常量IL2.36cosFrW2.37rFW力的功等于力沿质点位移方向的分量与质点位移大小的乘积2.38dsFdrFdWWbLabLabLaabcos)()()(2.39nnbLabLa2121)()()(合力的功等于各分力功的代数和2.40tWN功率等于功比上时间2.41dtdWtWNt0lim2.42vFvFtsFNtcoscoslim0瞬时功率等于力F与质点瞬时速度v的标乘积2.4320221210mvmvmvdvWvv功等于动能的增量2.44221mvEk物体的动能2.450kkEEW合力对物体所作的功等于物体动能的增量(动能定理)2.46)(baabhhmgW重力做的功2.47)()(babaabrGMmrGMmdrFW万有引力做的功2.48222121babaabkxkxdrFW弹性力做的功2.49pppEEEWbaab保势能定义2.50mghEp重力的势能表达式2.51rGMmEp万有引力势能2.52221kxEp弹性势能表达式2.530kkEEWW内外质点系动能的增量等于所有外力的功和内力的功的代数和(质点系的动能定理)2.540kkEE非内保内外保守内力和不保守内力2.55pppEEEW0保内系统中的保守内力的功等于系统势能的减少量2.56)()(00pkpkEEEEWW非内外2.57pkEEE系统的动能k和势能p之和称为系统的机械能2.580EEWW非内外质点系在运动过程中,他的机械能增量等于外力的功和非保守内力的功的总和(功能原理)2.59常量时,有、当非内外pkEEEWW00如果在一个系统的运动过程中的任意一小段时间内,外力对系统所作总功都为零,系统内部又没有非保守内力做功,则在运动过程中系统的动能与势能之和保持不变,即系统的机械能不随时间改变,这就是机械能守恒定律。2.6002022121mghmvmghmv重力作用下机械能守恒的一个特例2.6120202221212121kxmvkxmv弹性力作用下的机械能守恒第五章静电场5.1库仑定律:真空中两个静止的点电荷之间相互作用的静电力F的大小与它们的带电量q1、q2的乘积成正比,与它们之间的距离r的二次方成反比,作用力的方向沿着两个点电荷的连线。221041rqqF基元电荷:e=1.602C1910;0真空电容率=8.851210;041=8.999105.2rrqqFˆ412210库仑定律的适量形式5.3场强0qFE5.4rrQqFE3004r为位矢5.5电场强度叠加原理(矢量和)5.6电偶极子(大小相等电荷相反)场强E3041rP电偶极距P=ql5.7电荷连续分布的任意带电体rrdqdEEˆ4120均匀带点细直棒5.8cos4cos20ldxdEdEx5.9sin4sin20ldxdEdEy5.10jsosaiarE)(cos)sin(sin405.11无限长直棒jrE025.12dSdEE在电场中任一点附近穿过场强方向的单位面积的电场线数5.13电通量cosEdSEdSdE5.14dSEdE5.15sEEdSEd5.16sEdSE封闭曲面高斯定理:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的电荷的电量的代数和的015.17SqdSE01若连续分布在带电体上=Qdq015.18几种典型电荷分布的电场强度均匀带电球面均匀带电球体均匀带电长直圆柱面均匀带电长直圆柱体无限大均匀带电平面5.19)ˆ4120RrrrQE(均匀带点球就像电荷都集中在球心5.20E=0(rR)均匀带点球壳内部场强处处为零5.2102E无限大均匀带点平面(场强大小与到带点平面的距离无关,垂直向外(正电荷))5.22)11(400baabrrQqA电场力所作的功5.23LdlE0静电场力沿闭合路径所做的功为零(静电场场强的环流恒等于零)5.24电势差babaabdlEUUU5.25电势无限远aadlEU注意电势零点5.26)(baababUUqUqA电场力所做的功5.27rrQUˆ40带点量为Q的点电荷的电场中的电势分布,很多电荷时代数叠加,注意为r5.28niiiarqU104电势的叠加原理几种典型电场的电势均匀带电球面均匀带电直线5.29QardqU04电荷连续分布的带电体的电势5.30rrPUˆ430电偶极子电势分布,r为位矢,P=ql5.3121220)(4xRQU半径为R的均匀带电Q圆环轴线上各点的电势分布5.36W=qU一个电荷静电势能,电量与电势的乘积5.37EE00或静电场中导体表面场强5.38UqC孤立导体的电容5.39U=RQ04孤立导体球5.40RC04孤立导体的电容5.4121UUqC两个极板的电容器电容5.42dSUUqC021平行板电容器电容5.43)ln(2120RRLUQC圆柱形电容器电容R2是大的5.44rUU电介质对电场的影响5.4500UUCCr相对电容率5.46dSdCCrr00=0r叫这种电介质的电容率(介电系数)(充满电解质后,电容器的电容增大为真空时电容的r倍。)(平行板电容器)5.47rEE0在平行板电容器的两极板间充满各项同性均匀电解质后,两板间的电势差和场强都减小到板间为真空时的r15.49E=E0+E/电解质内的电场(省去几个)5.602033rRDEr半径为R的均匀带点球放在相对电容率r的油中,球外电场分布5.612221212CUQUCQW电容器储能电场的能量电容器的能量电场的能量密度电场的能量第六章稳恒电流的磁场6.1dtdqI电流强度(单位时间内通过导体任一横截面的电量)6.2jdSdIjˆ垂直电流密度(安/米2)6.4SSdSjjdIcos电流强度等于通过S的电流密度的通量6.5dtdqdSjS电流的连续性方程6.6SdSj=0电流密度j不与与时间无关称稳恒电流,电场称稳恒电场。6.7dlEK电源的电动势(自负极经电源内部到正极的方向为电动势的正方向)6.8LKdlE电动势的大小等于单位正电荷绕闭合回路移动一周时非静电力所做的功。在电源外部Ek=0时,6.8就成6.7了6.9qvFBmax磁感应强度大小毕奥-萨伐尔定律:电流元Idl在空间某点P产生的磁感应轻度dB的大小与电流元Idl的大小成正比,与电流元和电流元到P电的位矢r之间的夹角的正弦成正比,与电流元到P点的距离r的二次方成反比。6.1020sin4rIdldB