整式的乘法与因式分解能力培优

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-第十四章整式的乘法与因式分解14.1整式的乘法专题一幂的性质1.【2012·湛江】下列运算中,正确的是()A.3a2-a2=2B.(a2)3=a9C.a3•a6=a9D.(2a2)2=2a42.【2012·泰州】下列计算正确的是()A.3x·622xxB.4x·82xxC.632)(xxD.523)(xx3.【2012·衢州】下列计算正确的是()A.2a2+a2=3a4B.a6÷a2=a3C.a6·a2=a12D.(-a6)2=a12专题二幂的性质的逆用4.若2a=3,2b=4,则23a+2b等于()A.7B.12C.432D.1085.若2m=5,2n=3,求23m+2n的值.6.计算:(1)(-0.125)2014×(-2)2014×(-4)2015;(2)(-19)2015×811007.专题三整式的乘法7.下列运算中正确的是()A.2325aaaB.22(2)()2ababaabbC.23622aaaD.222(2)4abab8.若(3x2-2x+1)(x+b)中不含x2项,求b的值,并求(3x2-2x+1)(x+b)的值.-2-9.先阅读,再填空解题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(x+5)(x-6)=x2-x-30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________.(2)根据以上的规律,用公式表示出来:________.(3)根据规律,直接写出下列各式的结果:(a+99)(a-100)=________;(y-80)(y-81)=________.专题四整式的除法10.计算:(3x3y-18x2y2+x2y)÷(-6x2y)=________.11.计算:236274319132)()(abbaba.12.计算:(a-b)3÷(b-a)2+(-a-b)5÷(a+b)4.状元笔记【知识要点】1.幂的性质(1)同底数幂的乘法:nmnmaaa(m,n都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()mnmnaa(m,n都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:()nnnabab(n都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加.(3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.-3-3.整式的除法(1)同底数幂相除:mnmnaaa(m,n都是正整数,并且m>n),即同底数幂相除,底数不变,指数相减.(2)0a(a≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算.4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算.【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式.2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.-4-参考答案:1.C解析:A中,3a2与-a2是同类项,可以合并,3a2―a2=2a2,故A错误;B中,(a2)3=a2×3=a6,故B错误;C中,a3•a6=a3+6=a9,故C正确;D中,(2a2)2=22(a2)2=4a4,故D错误.故选C.2.C解析:3x·2235xxx,选项A错误;4x·2246xxx,选项B错误;23236()xxx,选项C正确;32236()xxx,选项D错误.故选C.3.D解析:A中,22223aaa,故A错误;B中,624aaa,故B错误;C中,628aaa,故C错误.故选D.4.C解析:23a+2b=23a×22b=(2a)3×(2b)2=33×42=432.故选C.5.解:23m+2n=23m·22n=(2m)3·(2n)2=53·32=1125.6.解:(1)原式=(0.125×2×4)2014×(-4)=12014×(-4)=-4.(2)原式=(-19)2015×92014=(19×9)2014×(-19)=-19.7.B解析:A中,由合并同类项的法则可得3a+2a=5a,故A错误;B中,由多项式与多项式相乘的法则可得22(2)()22ababaababb=222aabb,故B正确;C中,由单项式与单项式相乘的法则可得232322aaa=52a,故C错误;D中,由多项式与多项式相乘的法则可得222(2)44abaabb,故D错误.综上所述,选B.8.解:原式=3x3+(3b-2)x2+(-2b+1)x+b,∵不含x2项,∴3b-2=0,得b=23.∴(3x2-2x+1)(x+23)=3x3-2x2+x+2x2-43x+23=3x3-13x+23.9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b)(a+c)=a2+(b+c)a+bc;(3)根据(2)中得出的公式得:(a+99)(a-100)=a2-a-9900;(y-80)(y-81)=y2-161y+6480.10.-12x+3y-16解析:(3x3y-18x2y2+x2y)÷(-6x2y)=(3x3y)÷(-6x2y)-18x2y2÷(-6x2y)+x2y÷(-6x2y)=-12x+3y-16.-5-11.解:原式。)(1691919132919132262626274626274babababababababa12.解:(a-b)3÷(b-a)2+(-a-b)5÷(a+b)4,=(a-b)3÷(a-b)2-(a+b)5÷(a+b)4,=(a-b)-(a+b),=a-b-a-b,=-2b.-6-14.2乘法公式专题一乘法公式1.下列各式中运算错误的是()A.a2+b2=(a+b)2-2abB.(a-b)2=(a+b)2-4abC.(a+b)(-a+b)=-a2+b2D.(a+b)(-a-b)=-a2-b22.代数式(x+1)(x-1)(x2+1)的计算结果正确的是()A.x4-1B.x4+1C.(x-1)4D.(x+1)43.计算:(2x+y)(2x-y)+(x+y)2-2(2x2-xy)(其中x=2,y=3).专题二乘法公式的几何背景4.请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是()A.(a+b)(a-b)=a2-b2B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.(a+b)2=a2+ab+b25.如图,你能根据面积关系得到的数学公式是()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.a(a+b)=a2+ab6.我们在学习完全平方公式(a+b)2=a2+2ab+b2时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)2”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)2吗?-7-状元笔记【知识要点】1.平方差公式(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积,等于这两个数的平方差.2.完全平方公式(a±b)2=a2±2ab+b2,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.【温馨提示】1.不要将平方差公式和完全平方公式相混淆,注意它们项数和符号的不同.2.完全平方公式中,中间项是左边两个数的和的2倍,注意系数的特点.【方法技巧】1.公式中的字母a、b可以是具体的数,也可以是单项式、多项式.只要符合公式的结构特征,就可以利用公式.2.有些题目往往不能直接应用公式求解,但稍做适当的变形后就可以用乘法公式求解.如:位置变化,符号变化,数字变化,系数变化,项数变化等.-8-参考答案:1.D解析:A中,由完全平方公式可得(a+b)2-2ab=a2+2ab+b2-2ab=a2+b2,故A正确;B中,由完全平方公式可得(a-b)2=a2-2ab+b2,(a+b)2-4ab=a2+2ab+b2-4ab=a2-2ab+b2,故B正确;C中,由平方差公式可得(a+b)(-a+b)=(a+b)(b-a)=b2-a2=-a2+b2,故C正确;D中,(a+b)(-a-b)=-(a+b)2=-a2-2ab-b2,故D错误.2.A解析:原式=(x2-1)(x2+1)=(x2)2-1=x4-1.3.解:原式=4x2-y2+x2+2xy+y2-4x2+2xy=x2+4xy,当x=2,y=3时,原式=22+4×2×3=4+24=28.4.B解析:这个图形的整体面积为(a+b)2;各部分的面积的和为a2+2ab+b2;所以得到公式(a+b)2=a2+2ab+b2.故选B.5.C解析:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选C.6.解:(a+b+c)2的几何背景如图,整体的面积为:(a+b+c)2,用各部分的面积之和表示为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.-9-14.3因式分解专题一因式分解1.【2012·西宁】下列分解因式正确的是()A.3x2-6x=x(x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x-y)(4x+y)D.4x2-2xy+y2=(2x-y)22.【2012·广元】分解因式:3m3-18m2n+27mn2=____________.3.分解因式:(2a+b)2-8ab=____________.专题二在实数范围内分解因式4.在实数范围内因式分解x4-4=____________.5.把下列各式因式分解(在实数范围内)(1)3x2-16;(2)x4-10x2+25.6.在实数范围内分解因式:(1)x3-2x;(2)x4-6x2+9.专题三因式分解的应用7.如果m-n=-5,mn=6,则m2n-mn2的值是()A.30B.-30C.11D.-118.利用因式分解计算32×20.13+5.4×201.3+0.14×2013=___________.9.在下列三个不为零的式子:x2-4x,x2+2x,x2-4x+4中,(1)请你选择其中两个进行加法运算,并把结果因式分解;(2)请你选择其中两个并用不等号连接成不等式,并求其解集.-10-状元笔记【知识要点】1.因式分解我们把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式因式分解,也叫做把这个多项式分解因式.2.因式分解的方法(1)提公因式法:如果多项式的各项有

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功