Banach空间半线性发展方程的周期

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

H41H3Vol.41,No.31998T5zACTAMATHEMATICASINICAMay,1998BanachEGPTt(a730070)NIWqfeBanachroaXdfZyquXzbcZnvyqyqaaplhsmjvYgfZxgfZaipwkC0-Xzω-qω-qMR(1991)U34G20,45N05RAO175.15PeriodicSolutionsofSemilinearEvolutionEquationsinBanachSpacesLiYongxiang(DepartmentofMathematics,NorthwestNormalUniversity,Lanzhou730070,China)AbstractInthispaper,thesupersolutionandsubsolutionmethodisappliedtoperiodicsolutionproblemsforsemilinearevolutionequationsinorderedBanachspaces.Theresultsontheexistenceofmaximalperiodicsolutionandminimalperiodicsolutionareobtainedbyusingthecharacteristicsofpositiveoperatorssemigroupsandthemonotoneiterationscheme.Thispapergeneralizesandextendstherelevantresultsinordinarydifferentialequationsandpartialdifferentialequations.KeywordsNormalconvex-cone,PositiveC0-semigroups,ω-supersolution,ω-subsolution1991MRSubjectClassification34G20,45N05ChineseLibraryClassificationO175.151JHXBanachGXChARYcu(t)+Au(t)=f(t,u(t)),t∈R(1)Cω-CRAXCAR−AAC0-oT(t)(t≥0).f(t,x):R×X→XXwstωc(1)AVWYcvjPXOccSchr¨odingercF[1].LcCRrKhw!C[2],HLcCHNO(1)Cω-CRpmFs[0,ω]Cu(t)+Au(t)=f(t,u(t)),0≤t≤ω,u(0)=u(ω),(2)pu1997-01-20,Unu1997-11-26,u1998-01-08630ZZ41KXC#KnNAXCqWX1D(A)H·1=·+A·tCBanachx∃v∈C1([0,ω],X)∩C([0,ω],X1)(2)jF!v(t)+Av(t)≤f(t,v(t)),v(0)≤v(ω),(3)v(1)Cω-x(3)jDCF!vω-$VW%jcpN#GCcxpω-vω-wv≤w,ω-$%oKolesov[3,4]tAmann[5]mPoincar´eCPIcAXOcCN&KA&PoincarepNdAhARGX’LakshmikanthamtLeela[6]AhARGXCjcCN(%[7]r[6]C)yABanachCjc(1)A≡0CeQos*f+tR1p’Ce[7]Cs(CpXVW,tCZjcBanachCYc,Qp*!GA[1],AVhsARZj,[7]C-.mm)C0-oC/*0!t1.C#LM$WBA%HYc(1)CN&r’Aq(shmCC[3–7]Co#t)yChmsW%YcG4$hmsn+jP)yA[6]C)hmsqcjJA[3–5]2ghARGXC3%G2$v*$4KAARYcC5N+hARKNA&,C+2HG3$$4KA(1)CCN&r’AqVU(1)C,#mC+2s’WHt)C0-oHpw)C0-oCR’([8].2DF-O./0M123KXC#−ACC0-oT(t))o[8],Vx≥0,pT(t)x≥0.o$Co$6∃M07δ,T(t)≤Meδt,∀t≥0.(4)a(Vsc7C,−(A+CI)bA)C0-oS(t)=e−CtT(t).X1D(A)H·1=·+A·tCBanacho8$C[1],V∀x∈D(A)h(t)∈C1([0,ω],X),ARYc-u(t)+Au(t)=h(t),0≤t≤ω,u(0)=x,(5)p5uJu(t)∈C1([0,ω],X)∩C([0,ω],X1),doT(t).9u(t)=T(t)x+t0T(t−s)h(s)ds,0≤t≤ω.(6)Vx∈Xh∈C([0,ω],X),o(6)!nNCu∈C([0,ω],X),uN/m(5)C%ydmild[1].3)kE0Banach*+1BSZ4d2D5,631:;VhARc(1),xu∈C([0,ω],X)I6-jcu(t)=T(t)u(0)+t0T(t−s)f(s,u(s))ds,0≤t≤ω,(7)u(1)[0,ω]Cmilda((7)C323%VOq7C,pu(t)=S(t)u(0)+t0S(t−s)(f(s,u(s))+Cu(s))ds,(8)S(t)=e−CtT(t)−(A+CI)CC0-oVARYcpv782.1−ACC0-oT(t)9N∃M,ν0,T(t)≤Me−νt,∀t≥0,(9)ARYcu(t)+Au(t)=h(t),0≤t≤ω,u(0)=u(ω),(10)V∀h∈C([0,ω],X)5mildP(h)∈C([0,ω],X),di)xh∈C1([0,ω],X),P(h)∈C1([0,ω],X)∩C([0,ω],X1)uJii)xh(t)≥0,P(h)(t)≥0.Q:ooR’(T(ω))n=T(nω)≤Me−nν,v./r(T(ω))≤e−ν1,#I−T(ω)pp!S(I−T(ω))−1=∞n=0T(nω).(11)FB(h)=(I−T(ω))−1ω0T(ω−s)h(s)ds,u(t)=T(t)B(h)+t0T(t−s)h(s)dsP(h)(12)-(5)I6u(0)=B(h)Cmilddu(0)=u(ω)=B(h).a(P(h)(10)C5mildh∈C1([0,ω],X),v(t)=t0T(t−s)h(s)ds(5)I6v(0)=0CuJv∈C1([0,ω],X)∩C([0,ω],X1)./4v(ω)=ω0T(ω−s)h(s)ds∈D(A).oC0-oR’T(t)v(ω)∈D(A),∀t≥0.Fxm=mn=0T(nω)v(ω)(m=1,2,···).o(11)$m→∞,xm→(I−T(ω))−1v(ω),Axm=mn=0T(nω)Av(ω)→(I−T(ω))−1Av(ω),oACR$B(h)∈D(A).so(12)nNC(5)CI6u(0)=B(h)CP(h)uJh(t)≥0,ooT(t)C)Rv(ω)=ω0T(ω−s)h(s)ds≥0,#B(h)=∞n=0T(nω)v(ω)≥0.s(12),P(h)(t)≥0.632ZZ413;DF-O./0S=K)z#[9],−ACoT(t))C0-of(t,x):R×X→XXwstωa(C([0,ω],X)u=maxu(t)tBanachY,Y#K={u∈Y:u(t)≥0,0≤t≤ω}tpWBanachKb)z#C0-oT(t)(t≥0)0o[1]9t0,T(t)XC0V0oeQp783.1−ACC0-oT(t)0oxhARYc(1)ω-v0ω-w0,v0(t)≤w0(t)(0≤t≤ω),hARGf(t,x)Wi[v0,w0]I6(P)∃C0,V∀u,v∈[v0,w0],u≤v,pf(t,v)−f(t,u)≥−C(v−u),(1)[v0,w0]5mildω-uKmildω-u:v0(t)≤u(t)≤u(t)≤w0(t)(0≤t≤ω).Q:fCδ,−(A+CI)AX9NC)C0-oS(t)=e−CtT(t).D=[v0,w0],oN2.1,V∀h∈D,XCARYcu(t)+Au(t)+Cu(t)=f(t,h(t))+Ch(t),0≤t≤ω,u(0)=u(ω),(13)5mild(Qh)(t)=S(t)B1(h)+t0S(t−s)(f(s,h(s))+Ch(s))ds,(14)B1(h)=(1−S(ω))−1ω0S(ω−s)(f(s,h(s))+Ch(s))ds.a(QjDwYX&Q=h1,h2∈D,h1≤h2,o(P):f(t,h1(t))+Ch1(t)≤f(t,h2(t))+Ch2(t)(0≤t≤ω).fS(t))C0-ovω0S(ω−s)(f(s,h1(s))+Ch1(s))ds≤ω0S(ω−s)(f(s,h2(s))+Ch2(s))ds.o!(11),B1(h1)≤B1(h2).-o(14)!pQh1≤Qh2.-&v0≤Qv0,Qw0≤w0.fv0∈C1([0,ω],X1)∩C([0,ω],X1)ω-v0(t)+Av0(t)≤f(t,v0(t)),vv0(t)+Av0(t)+Cv0(t)≤f(t,v0(t))+Cv0(t),0≤t≤ω.!?Tg(t),v0(t)=S(t)v0(0)+t0S(t−s)g(s)ds≤S(t)v0(0)+t0S(t−s)(f(s,v0(s))+Cv0(s))ds.(15)/4v0(ω)≤S(ω)v0(0)+ω0S(ω−s)(f(s,v0(s))+Cv0(s))ds.fv0(0)≤v0(ω),vv0(0)≤(I−S(ω))−1ω0S(ω−s)(f(s,v0(s))+Cv0(s))ds=B1(v0).EcLo(14)p(Qv0)(t)=S(t)B1(v0)+t0S(t−s)(f(s,v0(s))+Cv0(s))ds,(16)(16)t(15)D1p(Qv0)(t)−v0(t)≥S(t)(B1(v0)−v0(0))≥0.#v0≤Qv0.:&Qw0≤w0.sQ(D)⊂D.&Q:D→DlX6F(Wh)(t)=t0S(t−s)(f(s,h(s))+Ch(s

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功