组合数学参考答案(卢开澄第四版)60页

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12.1题求序列{0,1,8,27,3n}的母函数。解:由序列可得到32333()23nGxxxxnx因为23111nxxxxx2311()'12341nxxxnxx设2311()()'23(1)1nnpxxxxxnxnxx2222221[()]'123(1)nnpxxxxnxnx设2223212()[()]'23(1)nnqxxpxxxxnxnx3323231[()]'123(1)nnqxxxnxnx3233313[()]'23(1)nnxqxxxxnxnx由以上推理可知[()]'xqx=,[7*94*(6)],nn所以可通过求得[()]'xqx得到序列的母函数:32()4Gxxxx2321()()[34(3)]6nHxFxdxxxnx2.2题已知序列343,,,,333n,求母函数解:3*2*14*3*2(3)*(2)*(1)()3*2*13*2*13*2*1nnnnGxx=1[3.2.14.3.2(3)(2)(1)]6nxnnnx211()()[3.24.3(3)(2)]6nFxGxdxxxnnx2321()()[34(3)]6nHxFxdxxxnx3431()()[]6nIxHxdxxXx因为23111nxxxx所以211()(1)61Ixxxx所以31()[]'''61xGxx就是所求序列母函数2.3题已知母函数2378()1354xGxxx,求序列{na}。解:2378()1354xGxxx=xxxBxA6149176191由23111nxxxx得277(19(9)(9))19nxxxx244(1(6)(6)(6))16nxxxx2所以由两式相加得:对应序列{na}={11,39,,[7*94*(6)],nn}2.4题已知母函数239()156xGxxx,求序列{na}。解:239()156xGxxx=1218171817ABxxxx则na=82*(1)*7nn2.5题设2nnGF,其中nF是Fibonacci数。证明:1230nnnGGG,n=2.3.4…..求{012,,,GGG}的母函数。解:(1).已知2nnGF则123nnnGGG=222243nnnFFF22122nnnFFF212223nnnFFF222324nnnFFF则222243nnnFFF则1230nnnGGG(2).01122()()nnnnGxGGxGGx=122011222nnnnnnGGxxGxxGx=22010202()nnnnnnGGxxGxGxGx=2010()()GGxxGxxGxGx=21()()xGxxGxx21()1xGxxx2.6题求序列{1,0,2,0,3,0,}的母函数。解:序列na=20(1)nnnx=2200nnnnnxx=220011(21)22nnnnnxx=22111()'2121xxx=221(1)x2.7题设nxnxxxG2642)1(4321=1/(1-x^2)^2求GxGx222)1(,)1(解:设246211234(1)111nxTGxxxnxxxLL22)1(1)1(11xxxxxxG所以1)nxxxxxxGx24222222111)1()1()1(2)1)1(1)1()1(222222xxGx2.8题求下列序列的母函数:(1)1,0,1,0,1,0,…(2)0,-1,0,-1,0,-1,…(3)1,-1,1,-1,1,-1,…解:(1)nxxxG2421211x(2)1253nxxxxG242221(1)11nxxxxxxxxLL(3)nnxxxxx)1(14322242422111(1)(1)111xxxxxxxxxxxLL2.9题设nxnxxxG221063132证明:(1)nxnxxxGx)1(4321)1(323(2)nxxxGx221)1((3)因为1)1(3Gx,所以有3)1(1xG证明(1)2232211136(1)123(1)2(1)(1)nnnGxxxxGxxnxxx(2)展开(1-x2)G=(1+x)/(1-2x+x2)当1x时有1111xxx(3)3232(1)(133)(136)xGxxxxx=23423451361015391830xxxxxxxx234391830xxxx34563610xxxx=131(1)Gx2.10题nxnxxxH3320104132证明(1)022)1(nnxnGHx(2)求H的表达式。证明(1)设H的第K+1项为hk,则hk=33n=1*2*3)1)(2)(3(kkk=6611623kkk,设G的前K+1项的和为Gk,则Gk=kkkg0=22+23+…+22k而22+23+…+22k=1+22*3+23*4+…+2)1(*)2(kk=1+21[3*2+4*3+…+(k+2)(k+1)]=1+21(1+22+32+…+k2+3+6+…+3k+2+2+…+2)①{注释:均为k项,分别为平方数列,等差数列,常数列}=1+21[61k(k+1)(2k+1)+2)1(3kk+2k]=1+12)1)(2(2kkk+4)1(3kk+k=121212)1(9)1)(2(2kkkkkk=6611623kkk=hkH=xG1(2)由H=1+4x+10x2+20x3+…+(33n)xn+…=1+x1*2*32*3*4+1*2*33*4*5x2+…+nxnnn1*2*3)1)(2)(3(+…对其3次积分得H=)1(63xx,对此积分式3次求导得H=((()1(63xx)))’’’。求解完毕。2.11题an=(n+1)2,G=0nnnxa=1+4x+…(n+1)2xn+…,证明(1-3x+3x2-x2)G是一个多项式,并求母函数G。解:G=0nnnxa=02)1(nnxn=02)12(nnxnnG=112nnxnx+012nnxnx+0nnx①G=xG+2)1(2xx+x11G(1-x)=2)1(1xxG=3)1(1xx即为所求4(1-3x+3x2—x2)=(1-x)3(1-3x+3x2—x2)G=(1-x)3G=(1-x)33)1(1xx=x+1求解完毕。①说明:可以由112nnxn=02)1(nnxn2.12题已知an=112nkk,3)1(1xx=02)1(nnxn,求序列{an}的母函数。解:设序列{an}的母函数为G(x),则G(x)=a0+a1x+a2x+…+anxn+a1nx1n+…an=112nkk=1+22+32+…+n2+(n+1)2G(x)=1+(1+22)x+(1+22+32)x2+…+(1+22+32+…+n2+(n+1)2)xn+…=1+x+x2+…xn+…+22x(1+x+x2+…xn+…)+32x2(1+x+x2+…xn+…)+…+(n+1)2xn(1+x+x2+…xn+…)+….=(1+x+x2+…xn+…)(1+22x+32x2+…+n2x1n+(n+1)2xn+…)=x1102)1(nnxn3)1(1xx=02)1(nnxnG=x113)1(1xxG=4)1(1xx即为序列{an}的母函数。求解完毕。2.13题已知213341014,(1),{}(1)nnnnknxxaknxax求序列的母函数。解:B(x)=13+23x+33x2+……1:a0=13b0=13x:a1=13+23b1=23x2:a2=13+23+33b2=33……a0=b0a1=b0+b1a2=b0+b1+b2……A(x)=b0(1+x+x2+……)+b1x(1+x+x2+……)+b2x2(1+x+x2+……)+……=(1+x+x2+……)(b0+b1x+b2x2+……)=xxB1)(=52)1(x41xx2.14题已知2{},12nxPxx的母函数为(a)求01;PP和(b){}nP求序列的递推关系解:特征多项式K(x)=x2-2x-1x2-2x-1=0解得:r1=1+2r2=1-2P(x)=)x2(11A+)x2(11BA+B=05-A(1-2)-B(1+2)=1得:A=42,B=-42P(x)=42()x2(111-)x2(111)=42kkkkx0])21()21[(Pn=42[(1+2)n-(1-2)n]P0=0,P1=12.15题已知{}na的母函数为21,1xx求序列{}na的递推关系01,aa。解:特征多项式K(x)=x2-x+1x2-x+1=0解得:r1=21+23i=cos3+isin3=ei3,r2=21-23i=cos3-isin3=ei3A(x)=x11rA+x12rBA1+A2=1,A1r2+A2r1=0解得:A1=1,A2=31an=A1cos3n+A2sin3n=cos3n+31sin3na0=1,a1=12.16题证明序列mm,1mm,2mm,…,nmm的母函数为(1-x)1m证明:当m=0时,命题成立。假设对于m-1,命题成立,即kkkmmX011=(1-x)m,则Gm(X)=kkkmmX0=kkkmmX01+kkkmmX011=XGm(X)+(1-x)m(1-X)Gm(X)=(1-x)m,Gm(X)=X11mX11=(1-x)1m2.17题22403123...(1)...()(1)()3nnnnGxxnxaGxx已知证明2003(),(1)(1)()(),{0,1,2,...}3nnnnnknbGaxaknkcan其中6324302224n0()G(1)G123(1)(1)G(1)1nnnnnkkkaxxxxnxxxxx证明:由已知所以有又根据牛顿二项式展开定理()4134330032430n41G(1)kkkkkknnnxxxxx令则有()得证nknnnknkxab0n02)1)(1(a,G其中)(xxxaxxnxxkiin

1 / 50
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功