1.如图,足够长的水平传送带始终以大小为v=3m/s的速度向左运动,传送带上有一质量为M=2kg的小木盒A,A与传送带之间的动摩擦因数为μ=0.3,开始时,A与传送带之间保持相对静止。先后相隔△t=3s有两个光滑的质量为m=1kg的小球B自传送带的左端出发,以v0=15m/s的速度在传送带上向右运动。第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时△t1=1s/3而与木盒相遇。求(取g=10m/s2)(1)第1个球与木盒相遇后瞬间,两者共同运动的速度时多大?(2)第1个球出发后经过多长时间与木盒相遇?(3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?2.如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量mc=5kg,在其正中央并排放着两个小滑块A和B,mA=1kg,mB=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A、B都与挡板碰撞后,C的速度是多大?(2)到A、B都与挡板碰撞为止,C的位移为多少?3.为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F1,放手后,木板沿斜面下滑,稳定后弹簧示数为F2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)6.如图所示,两平行金属板A、B长l=8cm,两板间距离d=8cm,A板比B板电势高300V,即UAB=300V。一带正电的粒子电量q=10-10C,质量m=10-20kg,从R点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在中心线上的O点的点电荷Q形成的电场区域(设界面PS右边点电荷的电场分布不受界面的影响)。已知两界面MN、PS相距为L=12cm,粒子穿过界面PS最后垂直打在放置于中心线上的荧光屏EF上。求(静电力常数k=9×109N·m2/C2)(1)粒子穿过界面PS时偏离中心线RO的距离多远?(2)点电荷的电量。BAvv0BAv0RMNLPSOEFl12.建筑工地上的黄沙堆成圆锥形,而且不管如何堆其角度是不变的。若测出其圆锥底的周长为12.5m,高为1.5m,如图所示。(1)试求黄沙之间的动摩擦因数。(2)若将该黄沙靠墙堆放,占用的场地面积至少为多少?*14.如图10所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强大小为E、方向水平向右,其宽度为L;中间区域匀强磁场的磁感应强度大小为B、方向垂直纸面向外;右侧匀强磁场的磁感应强度大小也为B、方向垂直纸面向里。一个带正电的粒子(质量m,电量q,不计重力)从电场左边缘a点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了a点,然后重复上述运动过程。(图中虚线为电场与磁场、相反方向磁场间的分界面,并不表示有什么障碍物)。(1)中间磁场区域的宽度d为多大;(2)带电粒子在两个磁场区域中的运动时间之比;(3)带电粒子从a点开始运动到第一次回到a点时所用的时间t.23.如图所示,在非常高的光滑、绝缘水平高台边缘,静置一个不带电的小金属块B,另有一与B完全相同的带电量为+q的小金属块A以初速度v0向B运动,A、B的质量均为m。A与B相碰撞后,两物块立即粘在一起,并从台上飞出。已知在高台边缘的右面空间中存在水平向左的匀强电场,场强大小E=2mg/q。求:(1)A、B一起运动过程中距高台边缘的最大水平距离(2)A、B运动过程的最小速度为多大(3)从开始到A、B运动到距高台边缘最大水平距离的过程A损失的机械能为多大?*31.如图预17-8所示,在水平桌面上放有长木板C,C上右端是固定挡板P,在C上左端和中点处各放有小物块A和B,A、B的尺寸以及P的厚度皆可忽略不计,A、B之间和B、P之间的距离皆为L。设木板C与桌面之间无摩擦,A、C之间和B、C之间的静摩擦因数及滑动摩擦因数均为;A、B、C(连同挡板P)的质量相同.开始时,B和C静止,A以某一初速度向右运动.试问下列情况是否能发生?要求定量求出能发生这些情况时物块A的初速度0v应满足的条件,或定量说明不能发生的理由.(1)物块A与B发生碰撞;(2)物块A与B发生碰撞(设为弹性碰撞)后,物块B与挡板P发生碰撞;(3)物块B与挡板P发生碰撞(设为弹性碰撞)后,物块B与A在木板C上再发生碰撞;(4)物块A从木板C上掉下来;(5)物块B从木板C上掉下来.*32.两块竖直放置的平行金属大平板A、B,相距d,两极间的电压为U。一带正电的质点从两板间的M点开始以竖直向上的初速度0v运动,当它到达电场中某点N点时,速度变为水平方向,大小仍为0v,如图预18-2所示.求M、N两点问的电势差.(忽略带电质点对金属板上电荷均匀分布的影响)*33.如图所示,AB是一段位于竖直平面内的光滑轨道,高度为h,末端B处的切线方向水平.一个质量为m的小物体P从轨道顶端A处由静止释放,滑到B端后飞出,落到地面上的C点,轨迹如图中虚线BC所示.已知它落地时相对于B点的水平位移OC=l.现在轨道下方紧贴B点安装一水平传送带,传送带的右端与B的距离为l/2.当传送带静止时,让P再次从A点由静止释放,它离开轨道并在传送带上滑行后从右端水平飞出,仍然落在地面的C点.当驱动轮转动从而带动传送带以速度v匀速向右运动时(其他条件不变),P的落地点为D.(不计空气阻力)(1)求P滑至B点时的速度大小(2)求P与传送带之间的动摩擦因数(3)求出O、D间的距离s随速度v变化的函数关系式.参考解答:1.(1)设第1个球与木盒相遇后瞬间,两者共同运动的速度为v1,根据动量守恒:01()mvMvmMv代入数据,解得:v1=3m/s(2)设第1个球与木盒的相遇点离传送带左端的距离为s,第1个球经过t0与木盒相遇,则:00stv设第1个球进入木盒后两者共同运动的加速度为a,根据牛顿第二定律:()()mMgmMa得:23/agms设木盒减速运动的时间为t1,加速到与传送带相同的速度的时间为t2,则:12vtta=1s故木盒在2s内的位移为零依题意:011120()svtvttttt代入数据,解得:s=7.5mt0=0.5s(3)自木盒与第1个球相遇至与第2个球相遇的这一过程中,传送带的位移为S,木盒的位移为s1,则:10()8.5Svtttm11120()2.5svtttttm故木盒相对与传送带的位移:16sSsm则木盒与传送带间的摩擦而产生的热量是:54QfsJ2.(1)A、B、C系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后,C的速度为零,即0Cv(2)炸药爆炸时有BBAAvmvm解得smvB/5.1又BBAAsmsm当sA=1m时sB=0.25m,即当A、C相撞时B与C右板相距msLsB75.02A、C相撞时有:vmmvmCAAA)(解得v=1m/s,方向向左而Bv=1.5m/s,方向向右,两者相距0.75m,故到A,B都与挡板碰撞为止,C的位移为3.0BCvvsvsm3.固定时示数为F1,对小球F1=mgsinθ①整体下滑:(M+m)sinθ-μ(M+m)gcosθ=(M+m)a②下滑时,对小球:mgsinθ-F2=ma③由式①、式②、式③得:μ=12FFtanθ6.(1)设粒子从电场中飞出时的侧向位移为h,穿过界面PS时偏离中心线OR的距离为y,则:h=at2/2qEqUammd0ltv即:20()2qUlhmdv代入数据,解得:h=0.03m=3cm带电粒子在离开电场后将做匀速直线运动,由相似三角形知识得:22lhlyL代入数据,解得:y=0.12m=12cm(2)设粒子从电场中飞出时沿电场方向的速度为vy,则:vy=at=0qUlmdv代入数据,解得:vy=1.5×106m/s所以粒子从电场中飞出时沿电场方向的速度为:22602.510/yvvvms设粒子从电场中飞出时的速度方向与水平方向的夹角为θ,则:034yvtanv37因为粒子穿过界面PS最后垂直打在放置于中心线上的荧光屏上,所以该带电粒子在穿过界面PS后将绕点电荷Q作匀速圆周运动,其半径与速度方向垂直。匀速圆周运动的半径:0.15yrmcos、由:22kQqvmrr代入数据,解得:Q=1.04×10-8C12.(1)沙堆表面上的沙粒受到重力、弹力和摩擦力的作用而静止,则sincosfmgFmg所以2tan0.75hhRl,37(称为摩擦角)(2)因为黄沙是靠墙堆放的,只能堆成半个圆锥状,由于体积不变,不变,要使占场地面积最小,则取Rx为最小,所以有xxhR,根据体积公式,该堆黄沙的体积为231134VRhR,因为靠墙堆放只能堆成半个圆锥,故318xVR,解得32xRR,占地面积至少为212xxSR=324m2≈9.97m214.解:(1)带正电的粒子在电场中加速,由动能定理得:212qELmv2qELvm在磁场中偏转,由牛顿第二定律得2vqvBmr,12mvmELrqBBq可见在两磁场区域粒子运动的半径相同。如右图,三段圆弧的圆心组成的三角形123OOO是等边三角形,其边长为2r。16sin602mELdrBq(2)带电粒子在中间磁场区域的两段圆弧所对应的圆心角为:1602120,由于速度v相同,角速度相同,故而两个磁场区域中的运动时间之比为:523001202121tt(3)电场中,12222vmvmLtaqEqE中间磁场中,qBmTt32622右侧磁场中,35563mtTqB则1232723mLmttttqEqB23.(1)由动量守恒定律:mυ0=2mυ,碰后水平方向:qE=2ma2mgEq-2aXm=0-υ2得:208mXg(2)在t时刻,A、B的水平方向的速度为02matgt竖直方向的速度为υγ=gt合速度为:22xy合解得υ合的最小值:min024(3)碰撞过程中A损失的机械能:222100113228Emmm碰后到距高台边缘最大水平距离的过程中A损失的机械能:212E2018mqEXm从开始到A、B运动到距离高台边缘最大水平距离的过程中A损失的机械能为:2012Em31.以m表示物块A、B和木板C的质量,当物块A以初速0v向右运动时,物块A受到木板C施加的大小为mg的滑动摩擦力而减速,木板C则受到物块A施加的大小为mg的滑动摩擦力和物块B施加的大小为f的摩擦力而做加速运动,物块则因受木板C施加的摩擦力f作用而加速,设A、B、C三者的加速度分别为Aa、Ba和Ca,则由牛顿第二定律,有AmgmaCmgfmaBfma事实上在此题中,BCaa,即B、C之间无相对运动,这是因为当BCaa时,由上式可得12fmg(1)它小于最大静摩擦力mg.可见静摩擦力使物块B、木板C之间不发生相对运动。若物块A刚好与物块B不发生碰撞,则物块A运动到物块B所在处时,A与B的速度大小相等.因为物块B与木板C的速度相等,所以此时三者的速度均相同,设为1v,由动量守恒定律得013mvmv(2)在此过程中,设木板C运动的路程为1s,则物块A运动的路程为1sL,如图预解17-8所示.由动能定理有2210111()22mvmvmgsL(3)2111(2)2mvmgs(4)或者说,在此过程中整个系统动能的改变等于系统内部相互间的滑动摩擦力做功的代数和((3)与(4)式等号两边相加),即221011(3)22mvmvmgL(