ppt-2013-Deconvolutional Networks

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

DeconvolutionalNetworksMatthewD.ZeilerGrahamW.TaylorRobFergusDept.ofComputerScience,CourantInstitute,NewYorkUniversityMattZeiler  Overview• “Generative”imagemodel• Convolutionalformofsparsecoding• Poolingwithlatentvariables(what/where)– Integratedintocostfunction(differentiable)• LearnfeaturesforobjectrecognitionTalkOverview• Singlelayer– ConvolutionalSparseCoding– GaussianPooling• Multiplelayers– Multi-layerinference– Filterlearning• Relatedwork• ExperimentsTalkOverview• Singlelayer– ConvolutionalSparseCoding– GaussianPooling• Multiplelayers– Multi-layerinference– Filterlearning• Relatedwork• ExperimentsRecap:SparseCoding(Patch-based)• Over-completelineardecompositionofinputusingdictionaryDictionaryInput  • regularizationyieldssolutionswithfewnon-zeroelements:• Outputissparsevector:yyDD￿1C(y,D)=argminpλ2￿Dp−y￿22+|p|1p=[0,0.3,0,...,0.5,...,0.2,...,0]ConvolutionalNetworks• Feed-forward:– Convolveinput– Non-linearity– Pooling• Supervised• Encoder-onlyInputImageConvolution(Learned)Non-linearityPoolingLeCun  et  al.  1998  FeaturemapsDeconvolutionalNetworks• Feed-back:– Unpoolfeaturemaps• Usinginferredlatentvariables– Convolveunpooledmaps• Learnedfilters• Unsupervised– Mustreconstructinput– Sparsityconstraint• Decoder-only– HavetoinferfeaturesInputImageConvolution(learned)Unpooling(latentvars.)FeaturemapsSparsityConstraint[Zeileretal.CVPR’10,ICCV’11]  SingleLayerArchitecture*  Σ  InputimageyConvLayer1UnpoolLayer1UnpooledMapz1,1FeatureMapp1,11stLayerFilters|.|0.5  θ1,1f11,1  fC1,1  f1B,1  fCB,1  UnpoolingVars  *  UnpooledMapzK,1|.|0.5  θK,1UnpoolingVars  *  *  Top    Down  • Decompositionofinputimage• Over-completeàper-elementsparsityconstraintGaussianUnpooling                          FeatureMapp!(1):µx,µy,x,y!(2):µx,µy,x,y!(3):µx,µy,x,y!(4):µx,µy,x,y(Un)poolingVariables!NeighborhoodN1N2N4Unpooledfeaturemapzxy• Eachunpoolingregionhasitsown2DGaussian  • Gaussianweightsscaledbyfeaturemapactivation• Differentiablerepresentation(What)  (Where)  SingleLayerCostFunctionλ2￿FUθp−y￿22+|p|αInputImage  FeatureMaps  Reconstruction  Sparsity(per-element)  Reconstructedimage  ˆy=￿kzk∗fkUnpooling[withGaussianparametersθ]  zk=Uθpk12(featuremapindex)  ˆy=￿kzk∗fkzk=Uθpkλ2￿FUθp−y￿22+|p|αSingleLayerCostFunctionInputImage  FeatureMaps  Reconstructedimage  Unpooling[withGaussianparametersθ]  Inferforeachimage  Learned(shareacrossallimages)  \frac{\lambda}{2}  \|  \textcolor{green}{F}  U_{\textcolor{red}{\theta}}  \textcolor{red}{p}  -­‐  y  \|_2^2  +  |\textcolor{red}{p}|_\alpha  \hat{y}=  \sum_k  z_k  *  \textcolor{green}{f_k}  \textcolor{red}{z_k}  =  U_{\textcolor{red}{\theta}}  \textcolor{red}{p_k}  12(featuremapindex)  SingleLayerInference• FeatureMapsp(What)– Fixconvolutionfiltersfandpoolingvariablesθ – Convolutionalformofsparsecoding– UseISTA[Beck&TeboulleSIAMJ.ImagingSciences2009]:• Gradientsteponreconstructionterm(Quadratic)• Gradientsteponsparsityterm• Projecttobenon-negative• Poolingvariablesθ (Where)– Fixconvolutionfiltersfandfeaturemapsp– Chainruleofderivativestoupdatemean&precisionofeachGaussianpoolingneighborhoodSingleLayerExample16FeatureMaps  UnpooledFeatureMaps  InputImage  Unpooling  Reconstruction  Filters  Convolution&Sum  EffectofPoolingVariablesPixel-spaceprojectionsofsamplefeaturemapactivations  Filtercoefficients  ReconstructionExamples  TalkOverview• Singlelayer– ConvolutionalSparseCoding– GaussianPooling• Multiplelayers– Multi-layerinference– Filterlearning• Relatedwork• ExperimentsStackingtheLayers• Takepooledmapsasinputtonextlayer• Jointinferenceoveralllayers– Onlypossiblewithdifferentiablepooling• Objectiveisreconstructionerrorofinputimage– Notlayerbelow,likemostdeepmodels• Sparsity&poolingmakemodelnon-linear– Noexplicitnon-linearities(e.g.sigmoid)OverallArchitecture(2layers)*  Σ  InputimageyConvLayer1ConvLayer2UnpoolLayer1UnpooledMapz1,1FeatureMapp1,11stLayerFilters2ndLayerFilters|.|0.5  z1,2  p1,2UnpoolLayer2θ1,2θ1,1zB,2  f11,1  fC1,1  f1B,1  fCB,1  UnpoolingVars  *  UnpooledMapzB,1FeatureMappB,1|.|0.5  θB,1UnpoolingVars  *  *  Σ  Σ  Σ  Σ  *  *  *  *  *  *  pB,2θB,2f11,2  f1B,2  θ1,θ2p2• Considerlayer2inference:– Wanttominimizereconstructionerrorofinputimage,subjecttosparsity.– Updatefeaturemapsattop(p2)andpoolingvariables(θ1,θ2)frombothlayers• Updatefeatures(ISTA):1.Reconstructinput2.Computeerror3.Forwardprop.error4.Gradientstep5.Shrinkage• UpdateGaussianpoolingvariables:Combinetop-downwithbottom-uperrorChainruleto• Noexplicitnon-linearitiesbetweenlayers– Butstillgetverynon-linearbehaviorMulti-layerJointInferenceLayer1featuresp1ReconstructedinputyLayer2unpooledfeaturesz2L0.5SparsityLayer1unpooledfeaturesz1UnpoolVarsθ1Uθ1  Pθ1  F1  FT1  F2  FT2  ^  R2  R2  T  Layer2featuresp2UnpoolVarsθ2Uθ2  Pθ2  ￿ˆy−y￿22FilterLearning∂C∂F=zTλ(Fz−y)→0• Goal:updateconvolutionalfiltersf• Fixedfeaturemapsp&poolingvariablesθ àfrominferenceonalltrainingimages• Over-constrainedleast-squaresproblem• UseConjugateGradients• NormalizetounitL2length&projectpositive• Learnfilterslayer-by-layer• Jointtrainingdoesn’tseemtoworkTwoLayerExamp

1 / 60
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功