第一章绪论1.什么是酶?答:酶是生物体产生的一类具有生物催化活性的生物大分子。2.酶的一般特性有哪些?答:(1)酶的催化效率高同一反应,酶催化反应的速度比一般催化剂催化的反应速度要大106~1013倍。有极少量酶就可催化大量反应物发生转变。(2)酶作用的专一性一种酶仅能作用于一种物质,或一类分子结构相似的物质,促其进行一定的化学反应,产生一定的反应产物,这种选择性作用称为酶的专一性。①键专一性这种酶只对底物分子中其所作用的键要求严格,而不管键两端所连基团的性质②基团专一性有些酶不但要求底物具有一定的化学键,而且对键的某一端所连的基团也有一定的要求。③绝对专一性这类酶对底物的要求很严格,甚至有时只能催化一种底物,进行一种化学反应。④立体异构专一性酶只能催化一种立体异构体发生某种化学反应,而对另一种立体异构体则无作用。(3)大多数酶的化学本质是蛋白质酶是由生物活细胞产生的有催化能力的蛋白质,只要不是处于变性状态,无论是在细胞内还是细胞外都可发挥催化作用。3.国际酶学委员会推荐的分类和命名规则的主要依据是哪些?其优缺点表现在哪里?答:酶学委员会提出以酶所催化的化学反应性质作为酶的分类和命名规则的主要依据,每一种酶都给以三个名称:系统名,惯用名和一个数字编号。系统名要求能确切地表明底物的化学本质及酶的催化性质;包括两部分,底物名称及反应类型;若酶催化的反应中有两种底物起反应,则这两种底物均需表明,当中用“:”隔开。举例:多酚氧化酶其系统名称为:1,2-苯二酚:氧-氧化还原酶。惯用名不需要非常的精确,要求比较简短,使用方便;一般根据酶所作用的底物名称、催化的反应性质、酶的来源或其他特点来进行命名。数字编号系统根据酶所催化反应的类型将酶分为6大类,并以4个阿拉伯数字来对每一种酶进行编号。例如乙醇脱氢酶,编号为EC1.1.1.1。EC是指酶学委员会(EnzymeCommission)。第一个数字代表酶的6个大分类,以1,2,3,4,5,6来分别代表如下6大酶类:(1)氧化还原酶(Oxidoreductases)催化氧化还原反应;(2)转移酶(Transferases)催化分子间基团转移的反应;(3)水解酶(Hydrolases)催化水解反应;(4)裂合酶(Lyases)催化非水解地除去底物分子中的基团及其逆反应;(5)异构酶(Isomerases)催化分子的异构反应;(6)连接酶(Ligases)(也称为合成酶)催化两分子连接的反应,反应中酶与ATP的一个焦磷酸键相偶联。4.酶对食品科学的重要性表现在哪些方面?答:(1)酶对食品加工和保藏的重要性①控制食品原料中的酶活力有效改善食品原料的风味和质地结构②利用酶的催化活性进行食品加工及保藏葡萄糖氧化酶作为除氧剂普遍应用于食品保鲜及包装中,延长食品保质期。溶菌酶在食盐、蔗糖等溶液中稳定,耐酸耐热性强,是天然安全的食品防腐剂。(2)酶对食品安全的重要性①通过改变酶蛋白的基本结构,达到强化酶在某方面功能特性的做法给食品酶的应用带来安全隐患。②食品中的酶作用会使食品品质特性发生改变,甚至会产生毒素和其他不利于健康的有害物质。③利用酶法解毒。(3)酶对食品营养的重要性①酶作用有可能导致食品中营养组分的损失。②利用酶作用去除食品中的抗营养素,提高食品的营养价值,使食品中的营养元素更利于人体的吸收利用。(4)酶对食品分析的重要性酶法分析具有准确、快速、专一性和灵敏性强等特点,其中最大优点就是酶的催化专一性强。酶法分析的样品一般不需要进行很复杂的预处理,尤其适合食品这一复杂体系。(5)酶与食品生物技术食品生物技术是生物技术的重要分支学科,主要研究基因工程、细胞工程、酶工程、发酵工程在食品工业上的应用。酶工程的主要研究内容是把游离酶固定化,或者把经过培养发酵产生目的酶活力高峰时的整个微生物细胞再固定化,然后直接应用于食品生产过程中物质的转化。酶不仅作为一类重要的研究对象,同时也作为重要的研究工具。第二章酶的生产与分离纯化1.酶的发酵生产中发酵效果受到那些因素的影响?答:酶的发酵生产中发酵效果除了受到菌种产酶性能的影响外,还受到发酵温度、pH、溶氧量等条件的影响。(1)温度对产酶的影响发酵温度的变化主要随着微生物代谢反应、发酵中通风、搅拌速度的变化而变化的。(2)pH对产酶的影响种子培养基和发酵培养基的pH直接影响酶的产量和质量。在发酵过程中,微生物不断分解和同化营养物质,同时排出代谢产物。由于这些产物都与pH有直接关系,因此发酵液pH在不断发生变化。生产上根据pH的变化情况常作为生产控制的根据。(3)通风量对产酶的影响其实通风量的多少应根据培养基中的溶解氧而定。(4)搅拌的影响对于好气性微生物的深层发酵,除了需要通气外,还需要搅拌。搅拌有利于热交换、营养物质与菌体均匀接触,降低细胞周围的代谢产物,从而有利于新陈代谢。同时可打破空气气泡,使发酵液形成湍流,增加湍流速度,从而提高溶氧量,增加空气利用。(5)泡沫的影响发酵中往往产生较多的泡沫。泡沫的存在阻碍了CO2的排除,影响溶氧量,同时泡沫过多影响补料,也易使发酵液溢出罐外造成跑料。因此,生产上必须采用消泡措施。(6)湿度用固体培养基生产酶制剂时,一般前期湿度低些,培养后期湿度大些,有利于产酶。2.酶的纯化方法主要有哪些?答:酶和杂蛋白的性质差异大体有以下几个方面,它们的分离方法根据这个基础分为:(1)根据分子大小而设计的方法。如离心分离法、筛膜分离法、凝胶过滤法等。(2)根据溶解度大小分离的方法、如盐析法、有机溶剂沉淀法、共沉淀法、选择性沉淀法、等电点沉淀法等。(3)按分子所带正负电荷多少分离的方法,如离子交换分离法、电泳分离法、聚焦层析法等。(4)按稳定性差异建立的分离方法,如选择性热变性法、选择性酸碱变性法、选择性表面变性法等。(5)按亲和作用的差异建立的分离方法,如亲和层析法、亲和电泳法等。3.凝胶过滤层析的原理答:凝胶过滤有多种名称,又称凝胶排阻层析、分子筛层析法、凝胶层析法等。是根据溶质分子的大小进行分离的方法。在显微镜下,可观察到凝胶过滤层析介质具有海绵状结构。将凝胶装于层析柱中,加入混合液,内含不同分子量的物质,小分子溶质能在凝胶海绵状网格内,即凝胶内部空间全都能为小分子溶质所达到,凝胶内外小分子溶质浓度一致。在向下移动的过程中,它从一个凝胶颗粒内部扩散到胶粒孔隙后再进入另一凝胶颗粒,如此不断地进人与流出,使流程增长,移动速率慢故最后流出层析柱。而中等大小的分子,它们也能在凝胶颗粒内外分布,部分送入凝胶颗粒,从而在大分子与小分子物质之间被洗脱。大分子溶质不能透人凝胶内,而只能沿着凝胶颗粒间隙流运动,因此流程短,下移速度较小分子溶质快而首先流出层析柱。因而样品通过定距离的层析柱后,不同大小的分子将按先后顺序依次流出,彼此分开。第三章酶的分子结构与催化功能1.什么是酶原?答:酶是在活细胞中合成的,但不是所有新合成的酶都具有催化活力,这种新合成酶的前体(无催化活力)称为酶原(Proenzyme)。就生命现象而言,酶原是酶结构一种潜在的存在形式,如果没有这种形式,生命就会停止。2.什么是酶的多形性?什么是同工酶?答:很多酶可催化相同的反应,但其结构和物理化学性质有所不同,这种现象称为酶的多形性。同工酶:指来自同一生物体同一生活细胞的酶,能催化同一反应,但由于结构基因不同,因而酶的一级结构、物理化学性质以及其它性质有所差别,称为同工酶。第四章酶催化反应动力学1.中间络合物学说?答:中间络合物学说也称酶底物中间络合物学说,最早是由Henri和Wurtz两位科学家提出的。在1903年,Henri在用蔗糖酶水解蔗糖实验研究化学反应中底物浓度与反应速度的关系时发现,当酶浓度不变时,可以测出一系列不同底物浓度下的化学反应速度,以该反应速度对底物浓度作图,可得到如图4-7所示的曲线。图4-7底物浓度对酶促反应速度的影响从该曲线图可以看出,当底物浓度较低时,反应速度与底物浓度的关系呈正比关系,反应表现为一级反应。然而随着底物浓度的不断增加,反应速度不再按正比升高,此时反应表现为混合级反应。当底物浓度达到相当高时,底物浓度对反应速度影响逐渐变小,最后反应速度几乎与底物浓度无关,这时反应达到最大反应速度(Vmax),反应表现为零级反应。根据这一实验结果,Henri和Wurtz提出了酶促化学反应的酶底物中间络合物学说。该学说认为:当酶催化某一化学反应时,酶(E)首先需要和底物(S)结合生成酶底物中间络合物即中间复合物(ES),然后再生成产物(P),同时释放出酶。该学说可以用下面的化学反应方程式来表示:我们根据中间络合物学说很容易解释图4-7所示的实验曲线,在酶浓度恒定这一前提条件下,当底物浓度很小时酶还未被底物所饱和,这时反应速度取决于底物浓度并与之成正比。随着底物浓度不断增大,根据质量作用定律,中间复合物ES生成也不断增多,而反应速度取决于ES的浓度,故反应速度也随之增高但此时二者不再成正比关系。当底物浓度达到相当高的程度时,溶液中的酶已经全部被底物所饱和,此时溶液中再也没有多余的酶,虽增加底物浓度也不会有更多的中间复合物ES生成,因此酶促反应速度变得与底物浓度无关,而且反应达到最大反应速度(Vmax)。当我们以底物浓度[S]对反应速度v作图时,就形成一条双曲线。在此需要特别指出的是,只有酶促催化反应才会有这种饱和现象,而与此相反,非催化反应则不会出现这种饱和现象。2.酶活力、比活力的定义?答:酶活力:酶活力是指酶催化反应的能力,它表示样品中酶的含量。1961年国际酶学会规定,lmin催化lμmol分子底物转化的酶量为该酶的一个活力单位(国际单位),温度为25℃,其它条件(pH、离子强度)采用最适条件。比活力:代表酶制剂的纯度。根据国际酶学委员会规定比活力用每毫克蛋白所含的酶活力单位数表示。对于同一种酶来说,比活力愈大,表示酶的纯度愈高。第六章(1)什么是酶分子修饰?答:通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰。(2)酶分子修饰方法主要有哪些?答:蛋白质工程技术修饰酶:蛋白质工程是指从改变蛋白质的基因入手,定向改造或制造出具有人们所期望特征的新型蛋白质的技术。是酶学和以基因重组技术为主的现代分子生物学技术相结合的产物。酶法有限水解:利用酶分子主链的切断和连接,使酶分子的化学结构及其空间结构发生某些改变,从而改变酶的特性和功能的方法。氨基酸置换修饰:将肽链上的某一个氨基酸换成另一个氨基酸,则可能引起酶蛋白空间结构的某些改变。通过氨基酸置换修饰,可使酶蛋白的结构发生某些精细的改变,从而提高酶活力或增加酶的稳定性。亲和标记修饰:利用酶和底物的亲和性,使用与酶底物类似的修饰剂,对酶活性部位上的氨基酸残基进行共价标记。特点:专一性、不可逆性大分子结合修饰(共价/非共价):利用水溶性大分子与酶结合,使酶的空间结构发生精细的改变,从而改变酶的特性与功能的方法。侧链基团修饰:采用一定的方法(一般为化学法)使酶蛋白的侧链基团发生改变,从而改变酶分子的特性和功能的修饰方法。酶分子的物理修饰:通过物理修饰,可以了解不同物理条件下,由于酶分子空间构象的改变而引起酶的特性和功能的变化情况。金属离子置换修饰:把酶分子中的金属离子换成另一种金属离子,使酶的特性和功能发生改变的修饰方法称为金属离子置换修饰。第七章(1)什么是糖酶?糖酶主要包括哪几类,各自有何特点?答:糖酶是能使糖类水解的酶的总称。主要包括淀粉酶、乳糖酶、纤微素酶、果胶酶(2)什么是淀粉酶?淀粉酶的分类及其特点?答:淀粉酶是能催化淀粉水解转化成葡萄糖、麦芽糖及其他低聚糖的一群酶的总称。系统名称常用名作用特性水解产物α-1.4葡聚糖-4-葡聚糖水解酶α-淀粉酶或液化酶不规则的分解淀粉、糖原类α-1.4键以直链淀粉为底物时,产生葡萄糖和麦芽糖。以支链淀粉为底物时,产生葡萄糖、麦芽糖和一系列α-限制糊精α-1.4葡聚糖-葡萄糖水解酶糖化型淀粉酶或葡萄糖淀粉E从非还原性未端以葡萄糖为单位顺次分解淀粉糖原类的α-1.4键,对α-1.3、α-1.6也有效以直链淀粉为底物时,产物葡萄糖以支