FFT中频率和实际频率的关系一,四个名词:实际物理频率,角频率,圆周频率,归一化频率实际物理频率表示AD采集物理信号的频率,fs为采样频率,由奈奎斯特采样定理可以知道,fs必须≥信号最高频率的2倍才不会发生信号混叠,因此fs能采样到的信号最高频率为fs/2。角频率是物理频率的2*pi倍,这个也称模拟频率。(卢注:由于一个信号周期(如交流电)是360度,即2pi。故角频率就是转了多少个2pi。设置角频率纯粹为了便于计算。)归一化频率是将实际物理频率按fs归一化之后的结果,最高的信号频率为fs/2对应归一化频率0.5,这也就是为什么在matlab的fdtool工具中归一化频率为什么最大只到0.5的原因。圆周频率是归一化频率的2*pi倍,这个也称数字频率。也就是归一化的角频率。二,有关FFT频率与实际物理频率的分析做n个点的FFT,表示在时域上对原来的信号取了n个点来做频谱分析,n点FFT变换的结果仍为n个点。换句话说,就是将2pi数字频率w分成n份,而整个数字频率w的范围覆盖了从0-2pi*fs的模拟频率范围。这里的fs是采样频率。而我们通常只关心0-pi中的频谱,因为根据奈科斯特定律,只有f=fs/2范围内的信号才是被采样到的有效信号。那么,在w的范围内,得到的频谱肯定是关于n/2对称的。举例说,如果做了16个点的FFT分析,你原来的模拟信号的最高频率f=32kHz,采样频率是64kHz,n的范围是0,1,2...15。(卢注:这意味着已经将原来的模拟信号采样了8遍。)这时,64kHz的模拟频率被分成了16分,每一份是4kHz,这个叫频率分辨率(卢注:做FFT用的点越多,频率分辨率越高)。那么在横坐标中,n=1时对应的f是4kHz,n=2对应的是8kHz,n=15时对应的是60kHz,你的频谱是关于n=8对称的。你只需要关心n=0到7以内的频谱就足够了,因为,原来信号的最高模拟频率是32kHz。这里可以有两个结论。第一,必须知道原来信号的采样频率fs是多少,才可以知道每个n对应的实际频率是多少,第k个点的实际频率的计算为f(k)=k*(fs/n)第二,你64kHz做了16个点FFT之后,因为频率分辨率是4kHz,如果原来的信号在5kHz或者63kHz有分量,你在频谱上是看不见的,这就表示你越想频谱画得逼真,就必须取越多的点数来做FFT,n就越大,你在时域上就必须取更长的信号样本来做分析。但是无论如何,由于离散采样的原理,你不可能完全准确地画出原来连续时间信号的真实频谱,只能无限接近(就是n无限大的时候),这个就叫做频率泄露。在采样频率fs不变得情况下,频率泄漏可以通过取更多的点来改善,也可以通过做FFT前加窗来改善,这就是另外一个话题了。离散信号傅里叶变换的周期性讨论(卢注:从下图可以看出:S平面,相当于直角坐标系,它的实轴是复数的实部,虚轴是复数的虚部。在这里可以理解为信号的在此频率下的幅值;Z平面,相当于极坐标系,与Re轴的夹角相当于频率,向量长度相当于幅值。)要分析这个,我们先从Laplace变换与Z变换之间的关系谈起。由,得z平面与s平面的关系图图中的关系有以下几点:s平面的虚轴映射到z平面的单位圆上s平面的负半轴映射到z平面的单位圆内s平面的正半轴映射到z平面的单位圆外Laplace变换是用于连续信号的变换,相对应的z变换是应用到z平面的变换。因此从另一个角度,上面谈到的角频率(模拟频率)对应的是s平面,圆周频率对应的是z平面(也是为什么称为圆周频率的原因)。现在我们来看一下s平面虚轴上模拟频率的变换将会导致z平面单位圆上如何变化:当模拟频率在s平面的虚轴上从0变到fs时,数字频率在z平面单位圆上从0变到2pi。当模拟频率在s平面的虚轴上从2fs变到4fs时,数字频率在z平面单位圆上仍然从0变到2pi。。。。。。。z平面如此循环重复我们知道离散信号的傅里叶变换对应到单位圆上的z变换,因此上面的结论就验证了为什么离散信号的傅里叶变换是周期性:根本原因所是单位圆上的周期性。考虑到我们实际应用中可选择一个周期,这也能够解释:因为实际信号的频率总是在fs/2以下,这就对应到z平面单位圆上的0~pi,在一个周期范围内就可以进行信号分析了。