ApplicationNoteRolandvanRoyAN045–January2016AN045©2016RichtekTechnologyCorporation1消除Buck转换器中的EMI问题摘要要想消除开关模式电源转换器中的EMI问题会是一个很大的挑战,因为其中含有很多高频成分。电子元件中的寄生成分常常扮演很重要的角色,所以其表现常常与预期的大相径庭。本文针对低压Buck转换器工作中的EMI问题进行很基础的分析,然后为这些问题的解决提供很实用的解决方案,非常具有参考价值。目录1.概述...................................................................................................................................................22.转换器中的EMI源头..........................................................................................................................23.转换器中的电流回路...........................................................................................................................34.输入和输出的滤波处理.......................................................................................................................45.降低转换器的开关切换速度................................................................................................................56.实战案例............................................................................................................................................97.BUCK转换器PCB布局设计要点.....................................................................................................198.你可以自制的简易EMI问题探测工具...............................................................................................219.总结.................................................................................................................................................23消除Buck转换器中的EMI问题AN045©2016RichtekTechnologyCorporation21.概述在设计开关模式转换器的时候,电磁兼容问题通常总是要在设计完成以后的测试阶段才会遇到。假如没有在设计的第一阶段就考虑到电磁兼容性问题,要在最后的环节再来降低其影响就会很困难,花费也会很高。所以,为了确保产品设计过程顺畅无阻,能够得到最优化的设计,最好的做法是在设计一开始的时候就开始考虑这个问题。在所有要考虑的因素中,元件选择和PCB布局设计是获得最佳EMI性能的关键。2.转换器中的EMI源头造成EMI问题的辐射源有两类:交变电场(高阻),交变磁场(低阻)。非隔离的DC/DC转换器具有阻抗很低的节点和环路(远低于自由空间的阻抗377Ω,此值为真空磁导率µ0和真空中的光速C0的乘积,也被称为自由空间的本质阻抗——译注),因而Buck架构DC/DC转换器中主要的辐射源通常是磁场。磁场辐射是由小型电流环中的高频电流形成的。电流环所生成的高频磁场会在离开环路大约0.16λ以后逐渐转换为电磁场,由此形成的场强大约为:𝐸=13.2∙10−15∙𝑓2∙𝐴∙𝐼𝑅其中,f是信号的频率,单位为Hz;A是电流环路的面积,单位为m2;I是电流环中的电流幅值,单位为A;R是测量点距离环路的距离,单位为m。举例而言,一个1cm2的电流环,其中的电流为1mA,电流变化频率为100MHz,则距离此电流环3m处的场强为4.4µV/m,或说是12.9dBµV。下图1显示了一个流过1mA电流的1cm2电流环所形成的辐射强度与电流变化频率之间的关系,图中绿线是标准容许的3m距离上的辐射强度阈值。图1由图可见,由1mA电流在1cm2环路中所形成的辐射并不容易超出规格的限制。现实中造成辐射超标的原因常常是应该极小化的环路变成了大的环路,或者是附加在线路上的导线形成了多余的辐射。这些大回路或导线所形成的天线效应将在总的辐射中发挥主要的作用。消除Buck转换器中的EMI问题AN045©2016RichtekTechnologyCorporation33.转换器中的电流回路Buck架构DC/DC转换器中存在两个电流发生剧烈变化的主回路:当上桥MOSFETQ1导通的时候,电流从电源流出,经Q1和L1后进入输出电容和负载,再经地线回流至电源输入端。在此过程中,电流中的交变成分会流过输入电容和输出电容。这里所说的电流路径如图2中的红线所示,它被标注为I1。当Q1截止以后,电感电流还会继续保持原方向流动,而同步整流开关MOSFETQ2将在此时导通,这时的电流经Q2、L1、输出电容流动并经地线回流至Q2,其回路如图2中蓝线所示,它被标注为I2。电流I1和I2都是不连续的,这意味着它们在发生切换的时候都存在陡峭的上升沿和下降沿,这些陡峭的上升沿和下降沿具有极短的上升和下降时间,因而存在很高的电流变化速度dI/dt,其中就必然存在很多高频成分。图2:BUCK转换器中的电流环在上面所述的回路中,电流环I1和I2共同共享了自开关节点电感输出电容地Q2的源极这一段路径。I1和I2合成起来后就形成了一个相对平缓、连续的锯齿状波形,由于其中不存在电流变化率dI/dt极高的边沿,其包含的高频成分就要少一些。从电磁辐射的角度来看,图3中存在阴影的A1区域是存在高电流变化率dI/dt的回路部分,这个回路将生成最多的高频成分,因而在Buck转换器的EMI设计中是需要被重点考虑的最关键部分。图中A2区域的电流变化率dI/dt就没有A1区域的高,因而生成的高频噪声也就比较少。图3当进行Buck转换器的PCB布局设计时,A1区域的面积就应当被设计得尽可能地小。关于这一点,可以参考第7章的PCB布局设计实战要点。消除Buck转换器中的EMI问题AN045©2016RichtekTechnologyCorporation44.输入和输出的滤波处理在理想状况下,输入、输出电容对于Buck转换器的开关电流来说都具有极低的阻抗。但在实际上,电容都存在ESR和ESL,它们都增加了电容的阻抗,并且导致上面出现额外的高频电压跌落。这种电压跌落将在电源供应线路上和负载连接电路上形成相应的电流变化,见图4。图4由于Buck转换器输入电流的不连续特性和实际为转换器供电的电源线通常都很长的缘故,输入回路A3所造成的辐射也可能是很可观的,并且可导致超出规格的传导辐射(在150kHz~30MHz频段),不能通过电磁兼容(EMC)的传导测试检验。为了降低输入电容CIN造成的电压跌落,可在靠近BuckIC的地方放置多种不同尺寸的低ESR的MLCC电容,例如可将1206封装的2x10µF和0603或0402封装的22nF~100nF电容结合起来使用。为了降低输入回路的噪声,强烈建议在输入线上添加额外的LC滤波器。当使用纯电感作为L2时,就有必要添加电解电容C3以抑制电源输入端可能出现的振铃信号,确保输入电源的稳定。为了对输出进行滤波,也要使用多种不同尺寸的MLCC电容作为输出电容Cout。小尺寸的0603或0402的22nF~100nF的电容可以很好地阻止源于开关切换节点的高频噪声经由电感L1的寄生电容耦合到输出端。额外增加的高频磁珠可防止输出回路变成有效的环形天线,但需要注意的是这方法可能使转换器的负载瞬态响应特性和负载调整特性变差。假如应用中的负载在这方面有严格要求,那就不要使用磁珠,可以直接将转换器尽可能地靠近负载,通过对铜箔的优化布置使环路的面积达到最小化。图5:BUCK转换器的输入、输出滤波处理消除Buck转换器中的EMI问题AN045©2016RichtekTechnologyCorporation55.降低转换器的开关切换速度假如通过PCB布局和滤波设计的优化仍然不能让一个Buck转换电路的辐射水平低于需要的水平,那就只能在降低转换器的开关切换速度上想办法,这对降低其辐射水平是很有帮助的。为了理解这能导致多大程度的改进,我们需要对不连续电流脉冲的高频成分进行一番探讨。图6左侧显示的是简化为梯形了的电流波形,其周期为TPERIOD,脉冲宽度为TW,脉冲上升/下降时间为TRISE。从频域来看此信号,其中含有基频成分和很多高次谐波成分,通过傅里叶分析可以知道这些高频成分的幅度和脉冲宽度、上升/下降时间之间的关系,这种关系被表现在图6的右侧。图6:脉冲波形的谐波成分图6中的频率值是基于一个具有800kHz频率的开关信号而得出的,该信号的脉冲宽度为320ns,具有10ns的上升/下降时间。EMI辐射问题常常发生在50MHz~300MHz频段。通过增加上升和下降时间可将fR的位置向低频方向移动,而更高频率信号的强度将以40dB/dec的速度快速降低,从而改善其辐射状况。在低频段,较低的上升和下降速度所导致的改善是很有限的。在自举电路上增加串联电阻开关切换波形的上升时间取决于上桥MOSFETQ1的导通速度。Q1是受浮动驱动器驱动的,该驱动器的供电来自于自举电容Cboot。在集成化的Buck转换器中,Cboot由内部的稳压器进行供电,其电压通常为4V~5V。见图7左侧。图7:在自举电路上增加串联电阻消除Buck转换器中的EMI问题AN045©2016RichtekTechnologyCorporation6通过降低上桥MOSFET开关的导通速度可使Buck转换器开关波形和电流脉冲的上升时间增加,这可通过给Cboot增加一只串联电阻Rboot来实现,如图7所示。Rboot的取值与上桥MOSFET的尺寸有关,对于大多数应用来说,5~10Ω就足够了。对于较小的MOSFET,它们具有较高的Rdson,较大的Rboot值是容许的。在高占空比的应用中,太大的Rboot值可能导致Cboot充电不足,甚至可能导致电流检测电路的不稳定。另外,较低的MOSFET导通速度也将增加开关损耗,从而导致效率的下降。在MOSFET外置的设计中,电阻可被串接到上桥MOSFET的栅极上,这就可以同时增加上桥的导通时间和截止时间。当上桥MOSFETQ1被关断的时候,电感电流会对Q1的寄生输出电容进行充电,同时对Q2的寄生输出电容进行放电,直至开关切换节点电位变得低于地电位并使Q2的体二极管导通。因此,下降时间基本上是由电感峰值电流和开关节点上的总寄生电容所决定的。图8显示出了一个常规设计中的Buck转换器IC中的寄生元件。图8这些寄生电容是由MOSFET的Coss和相对于基底之间的电容共同构成的,另外还有寄生电感存在于从IC引脚到晶圆内核之间的连接线上,这些寄生元件和PCB