高考常用数列不等式的证明方法知识点1.放缩为等比数列证明:2311111...313131312n2.裂项放缩1.1222(1)2(1)21nnnnnnnn2.221111111422nbnnnn证明:1.22211151...233n2.1112121...223nnn3.构造函数放缩1.ln(x+1)≤x证明:设*2Nnn时,,求证:1!ln!33ln!22lnnn证明:求导数可证ln(x+1)≤x1ln2*nnNnn时,,故!1)!1(1!1!lnnnnnnn1!11)!1)!1(1()!31!21()!211(!ln!33ln!22lnnnnnn4.数学归纳法1.(2012广东)设数列{an}的前n项和为Sn,满足2Sn=an+1+1-2n+1,n∈N﹡,且a1,a2+5,a3成等差数列。(1)、求a1的值;(2)、求数列{an}的通项公式。(3)、证明:对一切正整数n,有12311113...2naaaa.解:(1)在11221nnnSa中令1n得:212221Sa令2n得:323221Sa解得:2123aa,31613aa又21325aaa解得11a(2)由11221nnnSa212221nnnSa得12132nnnaa又121,5aa也满足12132aa所以132nnnaanN对成立∴11+232nnnnaa∴23nnna∴32nnna(3)(法一)∵1111132332233233nnnnnnn∴1113nna∴21123111311111113...1...1333213nnnaaaa2.数列{}na中,11a,2123nnaann,(*nN).(Ⅰ)试求、的值,使得数列2{}nann为等比数列;(Ⅱ)设数列{}nb满足:112nnnban,nS为数列{}nb的前n项和.证明:2n时,65(1)(21)3nnSnn.解:(Ⅰ)若2{}nann为等比数列,则存在0q,使221(1)(1)()nnannqann对*nN成立。…………………2分由已知:2123nnaann,代入上式,整理得2(2)(1)(23)0nqaqnqn………①……………4分∵①式对*nN成立,∴20102300qqq解得211q……………………………………5分∴当1,1时,数列2{}nann是公比为2的等比数列…………6分(Ⅱ)证明:由(Ⅰ)得:2211(11)2nnanna,即122nnann所以12112nnnbann……………………………8分∵221111111422nbnnnn…………………………9分2n时,1231111111355511222222nnSbbbbnn21511332n…………………………11分现证:6(1)(21)nnSnn(2n)3.数列na中,已知112(1)2,().52nnnnaaanNan(1)求数列na的通项公式;(2)设11(1)2nnnnaabnn,求数列nb的前n项和nT,求证:101nT解:(1)112(1)2122(1)nnnnnnnaanaanana11121111112(2),222nnnnnnnannnnnnaaaaaa111111111222(2)()2222212nnnnnnnnnnnnnaaaa(2)由1112122111()(1)2(12)(12)21212nnnnnnnnnaabnn知2111()2512nnT,所以101nT4.(2011年全国)设数列na满足10a且1111.11nnaa(Ⅰ)求na的通项公式;(Ⅱ)设111,,1.nnnnknkabbSn记S证明:解:(I)由题设1111,11nnaa即1{}1na是公差为1的等差数列。又1111,.11nnaa故所以11.nan(II)由(I)得11,11111nnabnnnnnnn,11111()11.11nnnkkkSbkkn5.数列na的前n项和为)()1(*2NnnnanSnn(1)求通项na;(2)设),1111(321nnSSSST求证:1nT解:(1)nnanSnn2)1(,1n时,2,221111aaSa2n时,)1()1(211nnnaSnn1nnnSSannann2)1()]1()1([21nnnannnaannn2)1(1,,21nnaa21anan2(2)nnnnnnSnnSnannn111)111()1(11),1(,21111nnSn)11111(1321nnnSSSSST)1()1()1()1(121nnnSSSST1111)111()111()3121()211(nnnnn*Nn1nT6.在数列,nnab中,112,4ab,且1,,nnnaba成等差数列,11,,nnnbab成等比数列.⑴求234,,aaa及234,,bbb,由此猜测,nnab的通项公式,并证明你的结论;⑵证明:1122111512nnababab.(Ⅰ)由条件得21112nnnnnnbaaabb,,由此可得2233446912162025ababab,,,,,.·········································2分猜测2(1)(1)nnannbn,.·····································································4分用数学归纳法证明:①当n=1时,由上可得结论成立.②假设当n=k时,结论成立,即2(1)(1)kkakkbk,,那么当n=k+1时,22221122(1)(1)(1)(2)(2)kkkkkkaabakkkkkbkb,.所以当n=k+1时,结论也成立.由①②,可知2(1)(1)nnannbn,对一切正整数都成立.·································7分(Ⅱ)11115612ab.n≥2时,由(Ⅰ)知(1)(21)2(1)nnabnnnn.····································9分故112211111111622334(1)nnabababnn……111111116223341nn…111111562216412n综上,原不等式成立.·················································································12分7.(Ⅰ)设数列{na}满足,,3,2,1,5,1211naaann证明对所有的1n,有:(i)141nnaa;(ii).3131131131121naaa证明:(Ⅰ)由数学归纳法知,0na,121452221nnnnaaaa,141nnaa……2分对2k,有1)14(414145212121kkkkkaaaaa3141444211kkkkaa,kka41311。对所有的1n,有nna4131131)411(31414141311311311221nnnaaa,.3131131131121naaa……8分8.(2011广东理科)设0b,数列{}na满足1ab,1122nnnnbaaan(2)n.(1)求数列{}na的通项公式;(2)证明:对于一切正整数n,1112nnnba.(1)解:∵1122nnnnbaaan,∴1122nnnabanan,∴1211nnnnabab①当2b时,1112nnnnaa,则{}nna是以12为首项,12为公差的等差数列∴11(1)22nnna,即2na②当0b且2b时,11211()22nnnnabbab当1n时,122(2)nnabbb∴1{}2nnab是以2(2)bb为首项,2b为公比的等比数列∴112()22nnnabbb∴212(2)2(2)nnnnnnnbabbbbb∴(2)2nnnnnbbab综上所述(2),02222nnnnnbbbbabb 且, (2)方法一:证明:①当2b时,11122nnnba;②当0b且2b时,12212(2)(222)nnnnnnbbbbb122112(1)12(1)(1)(1)2222222nnnnnnnnnnnnnnnnnbnbbabbbnbb11111111211111112222222222222nnnnnnnnnnnnnnnnbbbbbbb1112nnb∴对于一切正整数n,1112nnnba.方法二:证明:①当2b时,11122nnnba;②当0b且2b时,要证1112nnnba,只需证11(2)122nnnnnnbbbb,即证1(2)122nnnnnbbbb即证1221112222nnnnnnnbbbbb即证122111()(222)2nnnnnnbbbbnb即证2112231122221()()2222nnnnnnnnbbbbnbbbb∵2112231122221()()2222nnnnnnnnbbbbbbbb2121232111222()()()()2222nnnnnnnnbbbbbbbb212123211122222222222nnnnnnnnbbbbnbbbb,∴原不等式成立∴对于一切正整数n,1112nnnba.9.(2011年广东文科)设0b,数列{}na满足1ab,111nnnnbaaan(n≥2).(1)求数列{}na的通项公式;(2)证明:对于一切正整数n,2na≤11nb.(1)解:∵111nnnnbaaan,∴111