空间向量与距离西宁市沈那中学段义善这个结论说明,平面外一点到平面的距离等于连结此点与平面上的任一点(常选择一个特殊点)的向量在平面的法向量上的射影的绝对值.如图A,空间一点P到平面的距离为d,已知平面的一个法向量为n,且AP与n不共线,能否用AP与n表示d?如何利用空间向量求点到平面的距离:分析:过P作PO⊥于O,连结OA.则d=|PO|=||cos.PAAPO∵PO⊥,,n∴PO∥n.∴cos∠APO=|cos,PAn|.∴d=|PA||cos,PAn|=||||PAnn.nAPO一、求点到平面的距离例1、已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E、F分别是AB、AD的中点,求点B到平面GEF的距离。DABCGFExyzDABCGFExyz解:如图,建立空间直角坐标系C-xyz.由题设C(0,0,0),A(4,4,0),B(0,4,0),D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2).(2,2,0),(2,4,2),EFEG设平面EFG的一个法向量为(,,)nxyz:如图,已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.nEFnEG,|BE|211.11ndn2202420xyxy11(,,1),33nB(2,0,0)E答:点B到平面EFG的距离为21111.例1练习1:的距离。到平面求,,,平面SCDAaADaBCABSAABCDABABCDSA,290SBCDAxyz练习(用向量法求距离):如图,ABCD是矩形,PD平面ABCD,PDDCa,2ADa,、MN分别是、ADPB的中点,求点A到平面MNC的距离.APDCBMN练习2:DMPNAxCBzy:如图,以D为原点建立空间直角坐标系D-xyz则D(0,0,0),A(2a,0,0),B(2a,a,0),C(0,a,0),P(0,0,a)∵、MN分别是、ADPB的中点,∴2(,0,0)2Ma211(,,)222Naaa∴2(,,0)2MCaa,11(0,,)22MNaa,2(,0,0)2MAa设(,,)nxyz为平面MNC的一个法向量,∴,nMNnMC∴202nMCaxay且022aanMNyz解得22xyz,∴可取(2,1,1)m∴MA在n上的射影长2MAnadn即点A到平面MNC的距离为2a.例2、已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E、F分别是AB、AD的中点,求直线BD到平面GEF的距离。DABCGFExyz二、求直线与平面间距离|BE|211.11ndn正方体AC1棱长为1,求BD与平面GB1D1的距离A1B1C1D1ABCDXYZnnDDd1练习3:G例3、正方体AC1棱长为1,求平面AB1C与平面A1DC1的距离A1B1C1D1ABCDXYZ三、求平面与平面间距离nnADd练习4、在边长为1的正方体ABCD-A1B1C1D1中,M、N、E、F分别是棱A1B1、A1D1、B1C1、C1D1的中点,求平面AMN与平面EFDB的距离。ABCDA1B1C1D1MNEFxyznnABdBAMNnABndnab四、求异面直线的距离nabAB方法指导:①作直线a、b的方向向量a、b,求a、b的法向量n,即此异面直线a、b的公垂线的方向向量;②在直线a、b上各取一点A、B,作向量AB;③求向量AB在n上的射影d,则异面直线a、b间的距离为zxyABCC1EA1B1.已知直三棱柱111─ABCABC的侧棱14AA,底面△ABC中,2ACBC,90BCA,E是AB的中点,求异面直线CE与1AB的距离.例4zxyABCC1).4,2,0(),0,0,2(),0,1,1(),0,0,0(,1BAECxyzC则解:如图建立坐标系),4,2,2(),0,1,1(1BAEC则的公垂线的方向向量为设).,,(,1zyxnBAEC100nCEnAB即02240xyxyz取x=1,z则y=-1,z=1,所以)1,1,1(n).0,0,1(,,ACAC在两直线上各取点1||23.||3nCACEABdn与的距离EA1B1.已知直三棱柱111─ABCABC的侧棱14AA,底面△ABC中,2ACBC,90BCA,E是AB的中点,求异面直线CE与1AB的距离.例4已知正方体ABCD-A1B1C1D1的棱长为1,求异面直线DA1与AC的距离。ABDCA1B1C1D1xyz练习5练习6:如图,的距离。与,求距离为的到面,点所成的角为面与,且面是正方形,SDACABCDSABCDSAABCDSBABCD145ASCDBxyz