电路分析基础习题第九章答案(史健芳)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第9章9.1选择题1.处于谐振状态的RLC串联电路,当电源频率升高时,电路将呈(B)。A.电阻性B.电感性C.电容性D.视电路元件参数而定2.RLC串联电路中,发生谐振时测得电阻两端电压为6V,电感两端电压为8V,则电路总电压是(C)。A.8VB.10VC.6VD.14V3.5R、mHL50,与电容C串联,接到频率为1KHz的正弦电压源上,为使电阻两端电压达到最大,电容应该为(B)。066.5.AFB.F5066.0C.F20D.F24.下列关于谐振说法中不正确的是(D)。A.RLC串联电路由感性变为容性的过程中,必然经过谐振点B.串联谐振时阻抗最小,并联谐振时导纳最小C.串联谐振又称为电压谐振,并联谐振又称为电流谐振D.串联谐振电路不仅广泛应用于电子技术中,也广泛应用于电力系统中5.如图x9.1所示RLC并联电路,sI保持不变,发生并联谐振的条件为(A)。A.CL1B.CjLj1C.CL1D.CjLjR1图x9.1选择题5图6.若iii21,且Asin101ti,A)902sin(102ti,则i的有效值为(C)。A.20AB.A220C.10AD.A2/109.2填空题1.在含有L、C的电路中,出现总电压、电流同相位的现象,这种现象称为谐振。SIRLjCj12.RLC串联电路发生谐振时,电路中的角频率0LC/1,0fLC2/1。3.10R,H1L,F100C,串联谐振时,电路的特性阻抗100,品质因数Q=10。4.对某RLC并联电路端口外加电流源供电,改变使该端口处于谐振状态时,电压最大,导纳最小,功率因数1。5.两个同频率正弦电流1i和2i的有效值均为6A,若1i超前2i,且1i+2i的有效值为6A,则1i和2i之间的相位差为120°。6.电路如图x9.2所示,V)3cos2510()(ttu,已知5LR,45/1C,电压表和电流表均测有效值,则电压表读数为10V,和电流表为1A。图x9.2填空题6图9.3计算题1.图题x9.3所示电路,已知)(tiS6A,ttuScos)(215V,求电压u(t)。解:(1)电流源单独作用时,相量模型如图x9.3a所示。V8421U(2)电压源单独作用时,相量模型VA+-RLC如图x9.3b所示。SmmUjIjI)2()23(21,SmmUjIjI)2()242(12,把V015SU带入解得,则2.图题x9.4所示电路,A,R=2Ω,L=3H,C1=10μF,C2=5μF,=500rad/s,求电容C1两端电压的瞬时表示式。解:(1)直流分量单独作用时,相量模型如图x9.4a所示。(2)一次谐波分量单独作用时,相量模型如图x9.4b所示。1500,A062jLjIS,))(45cos(108)()()(21Vttututu0.45225.125.125.113525.25.25.221jIjImm0.452550.54*22jIUm)(20)()(101'11VRItuAISSCttttiS3cos222cos23cos2610)(4001,200121jCjjCj,6)40012120015001(1jjjU解得(3)二次谐波分量单独作用时,相量模型如图x9.4c所示。A033SI,角速度为2=1000解得(3)三次谐波分量单独作用时,相量模型如图x9.4所示。A024SI,角速度为3=1500))(8.179500cos(62.2)(''1VttuC20015002001''1jjjUUC3''1015.685.11jUC10030001001'''1jjjUUC3)20012110030001(1jjjU3'''1085.3413.01jUC))(5.1791000cos(585.0)('''1VttuC3200450032001''''1jjjUUC2)3400121320045001(1jjjU解得则3.图x9.5所示RLC串联组成的单口网络,已知R=75Ω,L=100Ω,C1=200Ω,端口电压为ttucos2100100)()302cos(250tV,试计算电路中的电流i(t)及其有效值,并求出单口网络所吸收的平均功率。解:相量模型如图x9.5a。0,V10011IU,A1.538.020010075,V0100222jjUIU,3''''1062.218.01jUC))(3.1781500cos(251.0)(''''1VttuC))(3.1781500cos(251.0)5.1791000cos(585.0)8.179500cos(62.220)()()()()(''''''''''1111VttttututututuCCCCcA1.234.010020075V,3050333jjUIU则电流有效值:894.04.08.022I(A)单口网络所吸收的平均功率)(43.6639.1803.48)1.23cos(4.050)1.53cos(8.01000100)1.23cos()1.53cos(332211WIUIUIUP4.图x9.6所示电路,求12II。解:画出相量模型,如图x9.6a所示。12)(IIjH5.RLC串联组成的单口网络如图x9.7所示,已知R=100Ω,L=0.1mH,C=10pF,求谐振频率0,品质因数Q以及带宽BW。)1.232cos(57.0)1.53cos(13.10)()()()(321tttitititiRCCjRCj2231解:RLC串联单口网络sradLC/6.316227761010101.011123062.31100101.06.3162277630RLQ,sradLRBW/10101.0100636.RLC并联电路如图x9.8所示,已知A,)cos()(05301010ttiSFCmHLkR1.0,110,求解:mHLFC1,1.0,105,则,01LC电路达到谐振状态3010254RIUSV,V)3010cos(10)(55ttu,A)3010cos(10)()(5ttitiSR,60250000LIRjLjUIRLA,A)6010cos(1000)(5ttiL,A120250000RCICRjUCjI,A)12010cos(1000)(5ttiC。以及,,)()((t))(CLtitiituR7.图x9.9所示电路,求电路的谐振角频率0。图x9.9计算题7图解:(1)等效导纳CjLjRjY00011)(,2202023020)(LRLCLCRjR,满足谐振状态,虚部为零解得220CLCRL(2)等效阻抗谐振角频率满足虚部为零,)1(//1022022022220222202122022022220222202010201CLRLRjLRLRRLRLRjLRLRCjRLjRCjRZ01022022022CLRLR解得222220LLCRR(3)等效阻抗满足虚部为零,解得21210LCLLL8.图x9.10所示电路,已知,,通过负载R的电流为零,时,通过负载R的电流达到最大值,求C1、C2。解:LCLjLjCj1211//1,LCLjCjRZ122112122211)(CLCCCCLjR,当KHzf1001时,0RI,则02122CLCC,得LfC211241,当KHzf502时,maxIIR,则01)(21CCL,)1(//1220201020010CLLLjRLjCjLjRZ012202010CLLLkHzfmHL100,1010RkHzf50kHzfmHL100,1010R解得pFC6.2531,FC31829.图x9.11所示电路,已知,,,。若电流2I=0,求1I、3I、4I以及1U、2U。解:画出相量模型,如图x9.11a所示。02I,则L2C2支路产生并联谐振,sradCL/1013220,200101LXL,2001101CXC,A02.2)()(11211CLXXjRRUI,V96.7553.453)(1212CjXRIU,V96.7553.45321UUU,A96.16553.4224LjXUI,A04.1453.4223CjXUI5021RR51FC102FC2.01HL1.02HL220VU10.图x9.12所示电路,已知R=10kΩ,C=0.02μF,试推导电压转移函数12UU,并绘出幅频波特图和相频波特图。图x9.12计算题10图画相量模型,如图x9.12a所示。(1)将R=10kΩ,C=0.02μF代入上式)(1)(11111)(212CRarctgCRCjRCjRCjUUjH)0002.0()102(11)(1)(1)(242arctgCRarctgCRjH幅频波特图:相频波特图:(2)将R=10kΩ,C=0.02μF代入上式幅频波特图:2410)102(11log20)(M)0002.0()(arctg)(jHCRarctgCRCRCRCjRCRCjRRUU111122222222212)5000()102(1102)1(1)()(2442arctgCRarctgCRCRjH24410)102(1102log20)(M相频波特图:11.图x9.13所示电路,试推导12UU,若用该电路设计一个C=1000rad/s的低通滤波器,试确定R、C的参数值。)5000()(arctg解:根据运算放大器两输入端“虚断”、“虚短”的特性,图x9.13所示电路有:为截止频率,707.0100011CRj,解方程得:310CR取得到:12.图题x9.14所示电路,试推导电压转移函数12UU,若用该电路设计一个低通滤波器,试确定各元件参数值,要求1414112jjjHu.)()(。解:画出相量模型如图x9.14a。根据运算放大器两输入端“虚断”、“虚短”的特性,得到:)(1)(11111)(212CRarctgCRCjRCjRCjUUjH2UUB22)(CjHsradc/1000FC1AABUCRjUCjRCjU222221111....(1)..........)1()1(22222UCRjUCRjUBAkR1列A点的基尔霍夫电流方程:将(1)式代入(2)式并整理得:根据题意,得到:取得到:.(2)..........0)(222111RUUUUCjRUUAAA2212121212)(11)(CRRjCCRRUUjHu

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功