排列组合问题经典题型

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共7页排列组合问题经典题型与通用方法1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,ABCDE五人并排站成一排,如果,AB必须相邻且B在A的右边,则不同的排法有()A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,AB可以不相邻)那么不同的排法有()A、24种B、60种C、90种D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是()A、1260种B、2025种C、2520种D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284CCC种B、44412843CCC种C、4431283CCA种D、444128433CCCA种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种B、240种C、120种D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种B、300种C、464种D、600种(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?第2页共7页10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()nABnAnBnAB例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。例11.现1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是()A、36种B、120种C、720种D、1440种(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?13.“至少”“至多”问题用间接排除法或分类法:例13.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有()A、140种B、80种C、70种D、35种14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法.例14.(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?(2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?15.部分合条件问题排除法:在选取的总数中,只有一部分合条件,可以从总数中减去不符合条件数,即为所求.例15.(1)以正方体的顶点为顶点的四面体共有()A、70种B、64种C、58种D、52种(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有()A、150种B、147种C、144种D、141种16.圆排问题单排法:把n个不同元素放在圆周n个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而首位、末位之分,下列n个普通排列:12323411,,,;,,,,,;,,,nnnnaaaaaaaaaaa在圆排列中只算一种,因为旋转后可以重合,故认为相同,n个元素的圆排列数有!nn种.因此可将某个元素固定展成单排,其它的1n元素全排列.例16.有5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?17.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地n个不同元素排在m个不同位置的排列数有nm种方法.例17.把6名实习生分配到7个车间实习共有多少种不同方法?第3页共7页18.复杂排列组合问题构造模型法:例18.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?19.元素个数较少的排列组合问题可以考虑枚举法:例19.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?20.复杂的排列组合问题也可用分解与合成法:例20.(1)30030能被多少个不同偶数整除?(2)正方体8个顶点可连成多少队异面直线?21.利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理.例21.(1)圆周上有10点,以这些点为端点的弦相交于圆内的交点有多少个?(2)某城市的街区有12个全等的矩形组成,其中实线表示马路,从A到B的最短路径有多少种?22.全错位排列问题公式法:全错位排列问题(贺卡问题,信封问题)记住公式即可瑞士数学家欧拉按一般情况给出了一个递推公式:用A、B、C……表示写着n位友人名字的信封,a、b、c……表示n份相应的写好的信纸。把错装的总数为记作f(n)。假设把a错装进B里了,包含着这个错误的一切错装法分两类:(1)b装入A里,这时每种错装的其余部分都与A、B、a、b无关,应有f(n-2)种错装法。(2)b装入A、B之外的一个信封,这时的装信工作实际是把(除a之外的)份信纸b、c……装入(除B以外的)n-1个信封A、C……,显然这时装错的方法有f(n-1)种。总之在a装入B的错误之下,共有错装法f(n-2)+f(n-1)种。a装入C,装入D……的n-2种错误之下,同样都有f(n-2)+f(n-1)种错装法,因此:得到一个递推公式:f(n)=(n-1){f(n-1)+f(n-2)},分别带入n=2、3、4等可推得结果。也可用迭代法推导出一般公式:)!1)1(!31!21!111(!)(nnnfn排列组合问题经典题型与通用方法解析版第4页共7页1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,ABCDE五人并排站成一排,如果,AB必须相邻且B在A的右边,则不同的排法有()A、60种B、48种C、36种D、24种解析:把,AB视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424A种,答案:D.2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种解析:除甲乙外,其余5个排列数为55A种,再用甲乙去插6个空位有26A种,不同的排法种数是52563600AA种,选B.3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.,,,,ABCDE五人并排站成一排,如果B必须站在A的右边(,AB可以不相邻)那么不同的排法有()A、24种B、60种C、90种D、120种解析:B在A的右边与B在A的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A种,选B.4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B.5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是()A、1260种B、2025种C、2520种D、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520CCC种,选C.(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284CCC种B、44412843CCC种C、4431283CCA种D、444128433CCCA种答案:A.6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C种方法,再把三组学生分配到三所学校有33A种,故共有234336CA种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种B、240种C、120种D、96种答案:B.7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?第5页共7页解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A方法,所以共有383A;③若乙参加而甲不参加同理也有383A种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A种,共有287A方法.所以共有不同的派遣方法总数为433288883374088AAAA种.9.多元问题分类法:元素多,取出

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功