1第一章合金化合金元素:特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。微合金元素:有些合金元素如V,Nb,Ti,Zr和B等,当其含量只在0.1%左右(如B0.001%,V0.2%)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ相;如Mn,Ni,Co,C,N,Cu;铁素体形成元素:在α-Fe中有较大的溶解度,且能稳定α相。如:V,Nb,Ti等。原位析出:元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时,合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr:离位析出:在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使HRC和强度提高(二次硬化效应)。如V,Nb,Ti等都属于此类型。2.合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在-Fe中形成无限固溶体?哪些能在-Fe中形成无限固溶体?答:铁素体形成元素:V、Cr、W、Mo、Ti、Al;奥氏体形成元素:Mn、Co、Ni、Cu能在-Fe中形成无限固溶体:V、Cr;能在-Fe中形成无限固溶体:Mn、Co、Ni3.简述合金元素对扩大或缩小γ相区的影响,并说明利用此原理在生产中有何意义?扩大γ相区:使A3降低,A4升高一般为奥氏体形成元素分为两类:a.开启γ相区:Mn,Ni,Co与γ-Fe无限互溶.b.扩大γ相区:有C,N,Cu等。如Fe-C相图,形成的扩大的γ相区,构成了钢的热处理的基础。(2)缩小γ相区:使A3升高,A4降低。一般为铁素体形成元素分为两类:a.封闭γ相区:使相图中γ区缩小到一个很小的面积形成γ圈,其结果使δ相区与α相区连成一片。如V,Cr,Si,A1,Ti,Mo,W,P,Sn,As,Sb。b.缩小γ相区:Zr,Nb,Ta,B,S,Ce等(3)生产中的意义:可以利用M扩大和缩小γ相区作用,获得单相组织,具有特殊性能,在耐蚀钢和耐热钢中应用广泛。4.简述合金元素对铁碳相图(如共析碳量、相变温度等)的影响。答:1)改变了奥氏体区的位置2)改变了共晶温度:(l)扩大γ相区的元素使A1,A3下降;(2)缩小γ相区的元素使A1,A3升高。当Mo8.2%,W12%,Ti1.0%,V4.5%,Si8.5%,γ相区消失。23.)改变了共析含碳量:所有合金元素均使S点左移。(提问:对组织与性能有何影响呢?)5.合金钢中碳化物形成元素(V,Cr,Mo,Mn等)所形成的碳化物基本类型及其相对稳定性。答:基本类型:MC型;M2C型;M23C6型;M7C3型;M3C型;M6C型;(强K形成元素形成的K比较稳定,其顺序为:TiZrNbVW,MoCrMnFe)各种K相对稳定性如下:MC→M2C→M6C→M23C6→M7C3→M3C6.主要合金元素(V,Cr,Ni,Mn,Si,B等)对过冷奥氏体冷却转变影响的作用机制。答:Ti,Nb,Zr,V:主要是通过推迟P转变时K形核与长大来提高过冷γ的稳定性;W,Mo,Cr:1)推迟K形核与长大;2)增加固溶体原子间的结合力,降低Fe的自扩散激活能。作用大小为:CrWMoMn:(Fe,Mn)3C,减慢P转变时合金渗碳体的形核与长大;扩大γ相区,强烈推迟γ→α转变,提高α的形核功;Ni:开放γ相区,并稳定γ相,提高α的形核功(渗碳体可溶解Ni,Co)Co扩大γ相区,但能使A3温度提高(特例),使γ→α转变在更高的温度进行,降低了过冷γ的稳定性。使C曲线向左移。Al,Si:不形成各自K,也不溶解在渗碳体中,必须扩散出去为K形核创造条件;Si可提高Fe原子的结合力。B,P,Re:强烈的内吸附元素,富集于晶界,降低了γ的界面能,阻碍α相和K形核。7.合金元素对马氏体转变有何影响?答:合金元素的作用表现在:1)对马氏体点Ms-Mf温度的影响;2)改变马氏体形态及精细结构(亚结构)。除Al,Co外,都降低Ms温度,其降低程度:强C→Mn→Cr→Ni→V→Mo,W,Si弱提高γ’含量:可利用此特点使Ms温度降低于0℃以下,得到全部γ组织。如加入Ni,Mn,C,N等合金元素有增加形成孪晶马氏体的倾向,且亚结构与合金成分和马氏体的转变温度有关.8.如何利用合金元素来消除或预防第一次、第二次回火脆性?1)低温回火脆性(第I类,不具有可逆性)其形成原因:沿条状马氏体的间界析出K薄片;防止:加入Si,脆化温度提高300℃;加入Mo,减轻作用。2)高温回火脆性(第II类,具有可逆性)3其形成原因:与钢杂质元素向原奥氏体晶界偏聚有关。防止:加入W,Mo消除或延缓杂质元素偏聚.9.如何理解二次硬化与二次淬火两个概念的相关性与不同特点。答:二次硬化:在含有Ti,V,Nb,Mo,W等较高合金钢淬火后,在500-600℃范围内回火时,在α相中沉淀析出这些元素的特殊碳化物,并使钢的HRC和强度提高。(但只有离位析出时才有二次硬化现象)二次淬火:在强K形成元素含量较高的合金钢中淬火后γ’十分稳定,甚至加热到500-600℃回火时升温与保温时中仍不分解,而是在冷却时部分转变成马氏体,使钢的硬度提高。相同点:都发生在合金钢中,含有强碳化物形成元素相对多,发生在淬回火过程中,且回火温度550℃左右。不同点:二次淬火,是回火冷却过程中Ar转变为m,是钢硬度增加。二次硬化:回火后,钢硬度不降反升的现象(由于特殊k的沉淀析出)10.一般地,钢有哪些强化与韧化途径?强化的主要途径宏观上:钢的合金化、冷热加工及其综合运用是钢强化的主要手段。微观上:在金属晶体中造成尽可能多的阻碍位错运动的障碍;或者尽可能减少晶体中的可动位错,抑制位错源的开动,如晶须。固溶强化、细晶强化、位错强化、“第二相”强化沉淀强化、时效强化、弥散强化、析出强化、二次硬化、过剩相强化)韧化途径:细化晶粒;降低有害元素的含量;防止预存的显微裂纹;形变热处理;利用稳定的残余奥氏体来提高韧性;加入能提高韧性的M,如Ni,Mn;尽量减少在钢基体中或在晶界上存在粗大的K或其它化合物相。第二章工程结构钢1.对工程结构钢的基本性能要求是什么?答:(1)足够高的强度、良好的塑性;(2)适当的常温冲击韧性,有时要求适当的低温冲击韧性;(3)良好的工艺性能。2.合金元素在低合金高强度结构钢中的主要作用是什么?为什么考虑采用低C?答:为提高碳素工程结构钢的强度,而加入少量合金元素,利用合金元素产生固溶强化、细晶强化和沉淀强化。利用细晶强化使钢的韧-脆转变温度的降低,来抵消由于碳氮化物沉淀强化使钢的韧-脆转变温度的升高。考虑低C的原因:(1)C含量过高,P量增多,P为片状组织,会使钢的脆性增加,使FATT50(℃)增高。(2)C含量增加,会使C当量增大,当C当量0.47时,会使钢的可焊性变差,不利于工程结构钢的使用。3.什么是微合金钢?微合金化元素在微合金化钢中的主要作用有哪些?答:微合金钢:利用微合金化元素Ti,Nb,V;主要依靠细晶强化和沉淀强化来提高强度;利用控制轧制和控制冷却工艺-----高强度低合金钢微合金元素的作用:41)抑制奥氏体形变再结晶;2)阻止奥氏体晶粒长大;3)沉淀强化;4)改变与细化钢的组织4.低碳贝氏体钢的合金化有何特点?解:合金元素主要是能显著推迟先共析F和P转变,但对B转变推迟较少的元素如Mo,B,可得到贝氏体组织。1)加入Mn,Ni,Cr等合金元素,进一步推迟先共析F和P转变,并使Bs点下降,可得到下B组织;2)加入微合金化元素充分发挥其细化作用和沉淀作用;3)低碳,使韧性和可焊性提高。第三章机械制造结构钢1)液析碳化物:由于碳和合金元素偏析,在局部微小区域内从液态结晶时析出的碳化物。2)网状碳化物:过共析钢在热轧(锻)加工后缓慢冷却过程中由二次碳化物以网状析出于奥氏体晶界所造成的。3)水韧处理:高锰钢铸态组织中沿晶界析出的网状碳化物显著降低钢的强度、韧性和抗磨性。将高锰钢加热到单相奥氏体温度范围,使碳化物充分溶入奥氏体,然后水冷,获得单一奥氏体组织。4)超高强度钢:一般讲,屈服强度在1370MPa(140kgf/mm2)以上,抗拉强度在1620MPa(165kgf/mm2)以上的合金钢称超高强度钢。2.调质钢、弹簧钢进行成分、热处理、常用组织及主要性能的比较,并熟悉各自主要钢种。答:成分热处理常用组织主要性能调质钢0.30~0.50%C的C钢或中、低合金钢淬火与高温回火回火S或回火T较高的强度,良好的塑性和韧性弹簧钢中、高碳素钢或低合金钢淬火和中温回火回火T高的弹性极限,高的疲劳强度,足够的塑性和韧性3.液析碳化物和带状碳化物的形成、危害及消除方法。答:形成:均起因于钢锭结晶时产生的树枝状偏析;液析碳化物属于偏析引起的伪共晶碳化物(一次碳化物);带状碳化物属于二次碳化物偏析(固相凝固过程中)危害:降低轴承的使用寿命,增大零件的淬火开裂倾向,造成硬度和力学性能的不均匀性(各向异性)消除方法:1)控制成分(C,Cr%);2)合理设计钢锭,改进工艺;3)大的锻(轧)造比来破碎碳化物;4)采用高温扩散退火(1200℃左右)。5.马氏体时效钢与低合金超强钢相比,在合金化、热处理、强化机制、主要性能等方面有何不同?合金化热处理强化机制主要性能5马氏体时效钢1)过大γ相区(Ni、Co);2)时效强化(Ni,Ti,Al,Mo,Nb,Mo);3)为提高塑韧性,必须严格控制杂事元素含量(C,S,N,P)1)高温奥氏体化后淬火成马氏体(Ms:100~150℃);2)进行时效,产生强烈沉淀强化效应,显著提高强度。固溶强化冷作相变强化时效强化高强度,同时具有良好的塑韧性和缺口强度;热处理工艺简单;淬火后硬度低,冷变形性能和切削性能好;焊接性较好低合金超强钢1)保证钢的淬透性(Cr,Mn,Ni);2)增加钢的抗回火稳定性(V,Mo);3)推迟低温回火脆性(Si);4)细化晶粒(V,Mo)。淬火+低温回火或等温淬火晶粒细化、沉淀硬化及亚结构的变化强度高;成本低廉;生产工艺较简单;韧塑性较差;较大的脱C倾向;焊接性不太好。3.高锰钢在平衡态、铸态、热处理态、使用态四种状态下各是什么组织?为何具有抗磨特性?答:平衡态组织:α+(Fe,Mn)3C;铸态组织:γ+碳化物;热处理态组织:单相γp;使用状态下组织:表面硬化层+内部γ具有抗磨特性的原因:1)高冲击和强挤压下,其表面层迅速产生加工硬化,在滑移面上形成硬化层,即冷作硬化,使其具有抗磨性。2)加入2-4%的Cr或适量的Mo和V,能形成细小碳化物,提高屈服强度、冲击韧性和抗磨性。4.GCr15钢是什么类型的钢?这种钢中碳和铬的含量约为多少?碳和铬的主要作用分别是什么?其预先热处理和最终热处理分别是什么?答:高碳铬轴承钢。C含量1%,Cr含量1.5%。C的作用:固溶强化提高硬度;形成碳化物。Cr的作用:提高淬透性、耐磨性、耐蚀性预先热处理:(扩散退火,正火)+球化退火最终热处理:淬火+低温回火+(稳定化处理)第四章工具钢3.什么是红硬性?为什么它是高速钢的一种重要性能?哪些元素在高速钢中提高红硬性?红硬性:在高的温度下保持硬度的能力。提高热硬性的元素有:W、Mo、V、Co、N(常与Al配合加入)。4.18-4-1高速钢的铸态显微组织特征是什么?为什么高速钢在热处理之前一定要大量地热加工?铸态组织鱼骨状Le+黑色与白色组织铸态高速钢组织中粗大的共晶碳化物必须经过锻轧将其破碎,是其尽可能成为均匀分布的颗粒状碳化物。67.高速钢18-4-1的最终热处理的加热温度为什么高达1280℃?在加热过程中为什么要在600~650℃和800~850℃进行二次预热保温?加热温度高:为使奥氏体中合金度含量较高,应尽可能提高淬火温度至晶界熔化温度偏下(晶粒仍然很细,8-9级)。目标:淬火后获得高合金的M组织,具有很高抗回火稳定性;在高温回火时析出弥散的合金碳化物产生二次硬化,使钢具有高的硬度和热硬性。一次或两次预热:由于高合金的高速钢导热性差,为防止工件加热时变形,开裂和缩短加热的保温时间以减少