平面向量向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式:ababab.⑷运算性质:①交换律:abba;②结合律:abcabc;③00aaa.⑸坐标运算:设11,axy,22,bxy,则1212,abxxyy.向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设11,axy,22,bxy,则1212,abxxyy.设、两点的坐标分别为11,xy,22,xy,则1212,xxyy.向量数乘运算:⑴实数与向量a的积是一个向量的运算叫做向量的数乘,记作a.①aa;②当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,0a.⑵运算律:①aa;②aaa;③abab.⑶坐标运算:设,axy,则,,axyxy.向量共线定理:向量0aa与b共线,当且仅当有唯一一个实数,使ba.设11,axy,22,bxy,其中0b,则当且仅当12210xyxy时,向量a、0bb共线.平面向量基本定理:如果1e、2e是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1、2,使1122aee.(不共线的向量1e、2e作为这一平面内所有向量的一组基底)分点坐标公式:设点是线段12上的一点,1、2的坐标分别是11,xy,22,xy,当12时,点的坐标是1212,11xxyy.(当1时,为中点公式。)平面向量的数量积:⑴cos0,0,0180ababab.零向量与任一向量的数量积为0.⑵性质:设a和b都是非零向量,则①0abab.②当a与b同向时,abab;当a与b反向时,abab;22aaaa或aaa.③abab.⑶运算律:①abba;②ababab;③abcacbc.⑷坐标运算:设两个非零向量11,axy,22,bxy,则1212abxxyy.若,axy,则222axy,或22axy.设11,axy,22,bxy,则12120abxxyy.设a、b都是非零向量,11,axy,22,bxy,是a与b的夹角,则121222221122cosxxyyababxyxy.