2库仑定律1.掌握库仑定律,要求知道点电荷的概念,理解库仑定律的含义及其表达式,知道静电力常量。2.会用库仑定律的公式进行有关的计算。3.知道库仑扭秤的实验原理。同种电荷相互排斥,异种电荷相互吸引既然电荷之间存在相互作用,那么电荷之间相互作用力的大小取决于哪些因素呢?1.可能跟电荷电量有关猜想:2.可能与两个电荷间的距离有关探究影响电荷间相互作用力的因素实验表明:电荷之间的作用力随着电荷量的增大而增大,随着距离的增大而减小。猜想:12qqF2221qqFr一定时,r1F2r1Fq一定时,早在我国东汉时期人们就掌握了电荷间相互作用的定性规律。卡文迪许和普里斯特等人都确信“平方反比”规律适用于电荷间的力。定量讨论电荷间的相互作用则是两千年后的法国物理学家库仑。库仑做了大量实验,于1785年得出了库仑定律。一、库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。2.适用范围:电荷间的这种作用力叫做静电力或库仑力。(1)真空中(2)静止的(3)点电荷点电荷当带电体间的距离比它们自身的大小大得多,以致带电体的形状、大小及电荷分布状况对它们之间的作用力的影响可以忽略时,这样的带电体就可以看做带电的点,叫做点电荷。解释:点电荷类似于力学中的质点,也是一种理想化的模型。二、库仑的实验法国物理学家库仑利用扭秤研究出了电荷间相互作用力的大小跟电量和距离的关系。库仑定律的表达式221rqqkF式中的k是比例系数,叫做静电常量。9229.010Nm/Ck计算大小时只需将电荷量的绝对值代入。方向:在两点电荷的连线上,同种电荷相斥,异种电荷相吸。例1已知氢核(质子)的质量是,电子的质量是,在氢原子内它们之间的最短距离为。试比较氢原子中氢核与电子之间的库仑力和万有引力。271.6710kg319.110kg115.310m解析:氢核和电子都可以看成点电荷,所以库仑力可以用计算求得。221rqqkF氢核和电子也可以看做质点,所以万有引力可以用计算求得。221rmmGF解:氢核与电子所带的电荷量都是191.610C221rqqkF库88.210N221rmmGF引473.610N39103.2引库FF微观粒子间的万有引力远小于库仑力,所以在研究微观带电粒子的相互作用时,万有引力忽略不计。如果存在两个以上的点电荷怎样求静电力?实验证明:两个点电荷之间的作用力不因第三个点电荷的存在而有所变化。两个或两个以上点电荷对某一个点电荷的作用力,等于各点电荷单独对这个点电荷的作用力的矢量和。例2真空中有三个点电荷,它们固定在边长为50cm的等边三角形的三个顶点上,每个点电荷电量都是求它们各自所受的库仑力。6210C,解析:由于每个点电荷的受力是相同的,所以只要求出一个点电荷受到的力即可。对q3受力分析F3就是q3受到的库仑力的合力q1q2q3+++F1F2F3通过受力分析可知,q3共受F1和F2两个力的作用,,相互距离r都相同,所以123qqqq2122qFFkr0.144N根据平行四边形定则,合力31F2Fcos300.25N合力的方向沿q1与q2连线的垂直平分线向下。同理可得q1、q2所受的库仑力。1.库仑定律的适用范围是()A.真空中两个带电球体间的相互作用B.真空中任意带电体间的相互作用C.真空中两个点电荷间的相互作用D.真空中两个大小远小于它们之间的距离的带电体CD2.关于点电荷的下列说法中正确的是()A.真正的点电荷是不存在的B.点电荷是一种理想化模型C.足够小的电荷就是点电荷D.一个带电体能否看成点电荷,不是看它的尺寸大小,而是看它的形状和大小对所研究的问题的影响是否可以忽略不计ABD3.两个半径均为1cm的导体球,分别带+Q和-3Q的电量,两球心相距90cm,相互作用力大小为F,现将它们碰一下后,放在两球心相距3cm处,则它们的相互作用力大小变为()A.3000FB.1200FC.900FD.无法确定D4.三个相同的金属小球a.b和c,c原来不带电,而a、b带等量异种电荷,相隔一定距离放置,a、b之间的静力为F。现将c球分别与a、b接触后拿开,则a、b之间静电力将变为()A.F/2B.F/4C.F/8D.3F/8C5.真空中有两个固定的带正电的点电荷,其电量Q1>Q2,点电荷q置于Q1、Q2连线上某点时,正好处于平衡,则()A.q一定是正电荷B.q一定是负电荷C.q离Q2比离Q1远D.q离Q2比离Q1近D6.两个放在绝缘架上的相同金属球,相距d,球的半径比d小得多,分别带q和3q的电荷,相互斥力为3F,现将这两个金属球接触,然后分开,仍放回原处,则它们的相互斥力将变为()A.0B.FC.3FD.4FD7.如图所示,用两根绝缘丝线挂着两个质量相同不带电的小球A和B,此时,上、下丝线受力分别为TA、TB;如果使A带正电,B带负电,上.下细线受力分别为TA′、TB′,则()A.TATA′B.TBTB′C.TA=TA′D.TBTB′BC库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。2.表达式:221rqqkF