2018版高考数学大一轮复习第五章平面向量第1讲平面向量的概念及线性运算课件理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1讲平面向量的概念及线性运算最新考纲1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义.知识梳理1.向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为零的向量;其方向是任意的记作___单位向量长度等于1个单位的向量非零向量a的单位向量为0±a|a|平行向量方向____或____的非零向量0与任一向量_______或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度____且方向_____的向量两向量只有相等或不等,不能比较大小相反向量长度____且方向_____的向量0的相反向量为0相同相反平行相等相同相等相反2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=_____.(2)结合律:(a+b)+c=_________b+aa+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=______;(2)当λ>0时,λa的方向与a的方向____;当λ<0时,λa的方向与a的方向____;当λ=0时,λa=___λ(μa)=____;(λ+μ)a=______;λ(a+b)=______|λ||a|相同相反0λμaλa+μaλa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得_______.b=λa诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)零向量与任意向量平行.()(2)若a∥b,b∥c,则a∥c.()(3)向量AB→与向量CD→是共线向量,则A,B,C,D四点在一条直线上.()(4)当两个非零向量a,b共线时,一定有b=λa,反之成立.()(5)在△ABC中,D是BC中点,则AD→=12(AC→+AB→).()解析(2)若b=0,则a与c不一定平行.(3)共线向量所在的直线可以重合,也可以平行,则A,B,C,D四点不一定在一条直线上.答案(1)√(2)×(3)×(4)√(5)√2.给出下列命题:①零向量的长度为零,方向是任意的;②若a,b都是单位向量,则a=b;③向量AB→与BA→相等.则所有正确命题的序号是()A.①B.③C.①③D.①②解析根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB→与BA→互为相反向量,故③错误.答案A3.(2017·枣庄模拟)设D为△ABC所在平面内一点,AD→=-13AB→+43AC→,若BC→=λDC→(λ∈R),则λ=()A.2B.3C.-2D.-3解析由AD→=-13AB→+43AC→,可得3AD→=-AB→+4AC→,即4AD→-4AC→=AD→-AB→,则4CD→=BD→,即BD→=-4DC→,可得BD→+DC→=-3DC→,故BC→=-3DC→,则λ=-3,故选D.答案D4.(2015·全国Ⅱ卷)设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=____________.解析∵向量a,b不平行,∴a+2b≠0,又向量λa+b与a+2b平行,则存在唯一的实数μ,使λa+b=μ(a+2b)成立,即λa+b=μa+2μb,则得λ=μ,1=2μ,解得λ=μ=12.答案125.(必修4P92A12改编)已知▱ABCD的对角线AC和BD相交于O,且OA→=a,OB→=b,则DC→=______,BC→=________(用a,b表示).解析如图,DC→=AB→=OB→-OA→=b-a,BC→=OC→-OB→=-OA→-OB→=-a-b.答案b-a-a-b考点一平面向量的概念【例1】下列命题中,不正确的是________(填序号).①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则“AB→=DC→”是“四边形ABCD为平行四边形”的充要条件;③若a=b,b=c,则a=c.解析①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB→=DC→,∴|AB→|=|DC→|且AB→∥DC→,又A,B,C,D是不共线的四点,∴四边形ABCD为平行四边形;反之,若四边形ABCD为平行四边形,则|AB→|=|DC→|,AB→∥DC→且AB→,DC→方向相同,因此AB→=DC→.③正确.∵a=b,∴a,b的长度相等且方向相同,又b=c,∴b,c的长度相等且方向相同,∴a,c的长度相等且方向相同,故a=c.答案①规律方法(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a与a|a|的关系:a|a|是与a同方向的单位向量.【训练1】下列命题中,正确的是________(填序号).①有向线段就是向量,向量就是有向线段;②向量a与向量b平行,则a与b的方向相同或相反;③两个向量不能比较大小,但它们的模能比较大小.解析①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a与b中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;③正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.答案③考点二平面向量的线性运算【例2】(1)(2017·潍坊模拟)在△ABC中,P,Q分别是AB,BC的三等分点,且AP=13AB,BQ=13BC.若AB→=a,AC→=b,则PQ→=()A.13a+13bB.-13a+13bC.13a-13bD.-13a-13b(2)(2015·北京卷)在△ABC中,点M,N满足AM→=2MC→,BN→=NC→.若MN→=xAB→+yAC→,则x=________;y=________.解析(1)PQ→=PB→+BQ→=23AB→+13BC→=23AB→+13(AC→-AB→)=13AB→+13AC→=13a+13b,故选A.(2)由题中条件得,MN→=MC→+CN→=13AC→+12CB→=13AC→+12(AB→-AC→)=12AB→-16AC→=xAB→+yAC→,所以x=12,y=-16.答案(1)A(2)12-16规律方法(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【训练2】(1)如图,正方形ABCD中,点E是DC的中点,点F是BC的一个靠近B点的三等分点,那么EF→等于()A.12AB→-13AD→B.14AB→+12AD→C.13AB→+12DA→D.12AB→-23AD→(2)在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若AO→=λAB→+μBC→,则λ+μ等于()A.1B.12C.13D.23解析(1)在△CEF中,有EF→=EC→+CF→.因为点E为DC的中点,所以EC→=12DC→.因为点F为BC的一个靠近B点的三等分点,所以CF→=23CB→.所以EF→=12DC→+23CB→=12AB→+23DA→=12AB→-23AD→,故选D.(2)∵AD→=AB→+BD→=AB→+13BC→,∴2AO→=AB→+13BC→,即AO→=12AB→+16BC→.故λ+μ=12+16=23.答案(1)D(2)D考点三共线向量定理及其应用【例3】设两个非零向量a与b不共线.(1)若AB→=a+b,BC→=2a+8b,CD→=3(a-b).求证:A,B,D三点共线;(2)试确定实数k,使ka+b和a+kb共线.(1)证明∵AB→=a+b,BC→=2a+8b,CD→=3(a-b).∴BD→=BC→+CD→=2a+8b+3(a-b)=2a+8b+3a-3b=5(a+b)=5AB→.∴AB→,BD→共线,又它们有公共点B,∴A,B,D三点共线.(2)解∵ka+b与a+kb共线,∴存在实数λ,使ka+b=λ(a+kb),即ka+b=λa+λkb,∴(k-λ)a=(λk-1)b.∵a,b是不共线的两个非零向量,∴k-λ=λk-1=0,∴k2-1=0,∴k=±1.规律方法(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a,b共线是指存在不全为零的实数λ1,λ2,使λ1a+λ2b=0成立.【训练3】(1)(2017·资阳模拟)已知向量AB→=a+3b,BC→=5a+3b,CD→=-3a+3b,则()A.A,B,C三点共线B.A,B,D三点共线C.A,C,D三点共线D.B,C,D三点共线(2)已知A,B,C是直线l上不同的三个点,点O不在直线l上,则使等式x2OA→+xOB→+BC→=0成立的实数x的取值集合为()A.{0}B.∅C.{-1}D.{0,-1}解析(1)∵BD→=BC→+CD→=2a+6b=2(a+3b)=2AB→,∴BD→、AB→共线,又有公共点B,∴A,B,D三点共线.故选B.(2)因为BC→=OC→-OB→,所以x2OA→+xOB→+OC→-OB→=0,即OC→=-x2OA→-(x-1)OB→,因为A,B,C三点共线,所以-x2-(x-1)=1,即x2+x=0,解得x=0或x=-1.答案(1)B(2)D[思想方法]1.向量的线性运算满足三角形法则和平行四边形法则.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.2.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.3.对于三点共线有以下结论:对于平面上的任一点O,OA→,OB→不共线,满足OP→=xOA→+yOB→(x,y∈R),则P,A,B共线⇔x+y=1.[易错防范]1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功