钵池变电所噪声治理初步设计方案某变电所噪声治理初步设计方案某变电所噪声治理初步设计方案1目录1.前言······································································································22.相关设计标准规则····················································································22.1《工业企业厂界噪声标准》GB12348-90····················································22.2《工业企业厂界噪声测量方法》GB12349-90··············································22.3《风机和罗茨鼓风机噪声测量方法》GB/T2888-91······································22.4《变压器和电抗器的声级测定》GB7328-1987··········································22.5《工业噪声设计控制规则》GBJ87-85·······················································22.6《供暖通风设计手册》··········································································22.7《建筑声学设计手册》··········································································23.钵池变电所设备概况·················································································24.钵池变电所噪声现状·················································································34.1厂界噪声(dB(A))············································································34.2设备噪声(dB(A))············································································35.钵池变电所噪声治理途径分析·····································································45.1治理目标··························································································45.2噪声源分析·······················································································45.3治理思路··························································································45.3.1控制噪声源··················································································45.3.2治理噪声·····················································································55.3.2.1隔声处理·························································································55.3.2.2散热措施·························································································55.3.2.3进、出风口布置··············································································55.3.2.4其它处理·························································································56.钵池变电所噪声治理方案···········································································77.预计工程进度··························································································88.附录······································································································8某变电所噪声治理初步设计方案21.前言某公司所属钵池变电所位于某市主城东区,该变电所为35kV变电所。该变电所二台产自1994年1600KVA变压器本体及冷却风扇噪声较大。钵池变电所的大门位于变电所西侧,大门外是市供电公司开发区门市部北侧为开发区主干道。变电所厂界南侧是一栋3层居民楼,东侧是一个企业。钵池变电所的占地面积较少,因此噪声的距离衰减量较少,因此厂界噪声的超标问题比较突出。钵池变电所的占地面积很小,变电所的厂界与变压器室的距离很近,噪声的距离衰减量较少。因此厂界噪声的超标问题比较突出,周围居民屡有投诉。为了改善钵池变电所目前的运行环境,改善周围居民的居住环境,某公司决定于对钵池变电所实施噪声治理。某公司针对目前钵池变电所实际情况,提出了钵池变电所噪声治理方案。2.相关设计标准规则2.1《工业企业厂界噪声标准》GB12348-902.2《工业企业厂界噪声测量方法》GB12349-902.3《风机和罗茨鼓风机噪声测量方法》GB/T2888-912.4《变压器和电抗器的声级测定》GB7328-19872.5《工业噪声设计控制规则》GBJ87-852.6《供暖通风设计手册》2.7《建筑声学设计手册》3.钵池变电所设备概况钵池变电所目前的主要设备为二台产自1994年1600KVA变压器。某变电所噪声治理初步设计方案34.钵池变电所噪声现状4.1厂界噪声(dB(A))根据《城市区域环境噪声标准》(GB3096-93),钵池变电所所属区域按照2类居民区的标准执行。2006年8月,江苏省电力试验研究院对钵池变电所的厂界噪声进行了测试。测试期间,变压器正常运行。测试期间厂界噪声的测试结果如下:测点方位测量值(dB(A))所属区划标准值(dB(A))昼间夜间昼间夜间北侧最大值83.026050最小值64.6西侧最大值74.3最小值66.7南侧最大值62.3最小值61.9东侧最大值73.3最小值69.3备注:变电所的北侧是一条大马路。变电所的厂界南侧为居民楼。从测试的结果可以看出,钵池变电所昼间噪声的最大超标为23.0dB(A)。夜间噪声的最大超标为dB(A)。4.2设备噪声(dB(A))在变压器正常运行,变压器的散热风扇全部开启的情况下,对变压器的设备噪声进行了测试。测试结果如下:设备名称设备噪声最大值(dB(A))设备噪声最小值(dB(A))#1变压器88.585.0#2变压器87.784.3某变电所噪声治理初步设计方案45.钵池变电所噪声治理途径分析5.1治理目标目前,钵池变电所的噪声昼间、夜间均超标,因此,治理目标首先应当在目前基础上,在保证变电所安全运行的同时,降低变电所噪声,使其厂界噪声达到昼间60dB(A),夜间50dB(A)的2类居民区标准(或不高于背景噪声值),以解决目前变电所的厂界噪声超标问题,同时保持变压器的散热良好,保证变压器的安全运行。5.2噪声源分析变电所噪声主要由变压器的噪声和排风风扇的噪声等构成。其中,变压器噪声以低频噪声为主,而排风风扇噪声以中高频噪声为主。变压器的噪声来源于变压器本体和冷却系统两部分。本体噪声主要由铁芯硅钢片磁致伸缩引起的振动,通过铁芯垫脚和变压器油传递给箱体和附件而产生。本体噪声是由两倍电源频率为基频的噪声和频率为基频整数倍的低频噪声所构成。变压器铁芯噪声的频谱范围在100~500Hz之间。冷却系统的噪声主要由风扇和油泵的振动引起。5.3治理思路通常变电站的噪声治理的措施考虑可以有以下几种:5.3.1控制噪声源一般情况下,通过控制变压器铁芯的振动,能降低变压器的本体噪声3-5dB(A);通过控制变压器油箱振动并采用隔、吸声措施,能降低噪声5-10dB(A)。由于控制变压器铁芯振动的改造工作量较大,控制油箱的振动也会影响变压器的散热能力,而且,对于定型的变压器进行这类改造,需要停运设备,某变电所噪声治理初步设计方案5并且改造费用很高,一般很少采用。5.3.2治理噪声治理变电所的噪声,可以采用隔声处理、吸声处理等措施来完成,采用该措施同时与通风散热措施一并综合考虑。5.3.2.1隔声处理在不对钵池变电站的变压器本体进行改造的情况下,对变压器室原有的进风口、出风口、排风风扇、百叶窗以及检修门等进行必要的封闭隔声处理,这样可以有效地阻断噪声的外传。为了保证变压器的检修,需要保留变压器室的检修门,保持处理以后检修门的大小不小于变压器大小。钵池变电站变压器室的总隔声量由墙、检修门、进风通道、百叶窗、排风风扇等部分决定。变压器室总隔声量计算如下:R总=10lg332211SSSAτττ式中,R总:总隔声量,dB;τi:i构件的传声系数;Si:i构件的表面积,m2;A:变压器室的总表面积,m2。5.3.2.2散热措施采取降噪措施将变压器室的北侧大门门洞改装成隔声大门(见图),由此变压器所产生的热量散发会有困难,影响变电所的安全运行。因此,解决好变压器室的散热问题成为噪声治理的关键。为了保证变压器的散热问题,需要保证每台变压器需要的最大通风量。某变电所噪声治理初步设计方案6变压器所需通风量计算如下:L=)(·gpttrCQ式中,L:换气量m3/h;Q:变压器的散热量K/h,Q=3600N(K/h)(N为变压器的铜损和铁损kW)C:空气比热(一般取1.01Kj/(kg*k))r:空气比重(在45℃时,r=1.11kg/m3)tp:变压器室排气温度(取45℃)tg:吸入室外空气温度(取35℃)由上各已知数代入公式计算得此变压器室的通风换气量L为59940m3/h,共四轴流风机,则每台的风量为:L/4=14985m3/h。5.3.2.3进、出风口布置为了解决运行变压器的散热问题,需要采取机械强制通风措施。此时,进风口、出风口位置的合理布置,这是保证变压器室通风散热效率的关键。根据变压器室的风流路径以及现场的环境特点,保留原来变压器室的侧面下层进风口,另外再在北侧隔声大门的下面增加百页进风口,在变压器室侧面的两个进风口外增加两个隔声罩,进风口隔声罩四面封闭只有一面开口朝下与室外相通,出风口置于变压器室的屋顶位置。这样可以使通风流量尽可能地均匀分布,以减少紊流和死角的产生而影响风流的畅通,最大限度地提高通风散热的效率。5.3.2.4其它处理变压器