EEG signal processing 脑电信号处理方法算法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

EEGSIGNALPROCESSINGEEGsignalmodelling1Availablefeatures2Classificationalgorithms3IndependentComponentAnalysis4CONTENTSparseRepresentation51EEGsignalmodellingBioelectricity1Signalgenerationsystem2BIOELECTRICITYSIGNALGENERATIONSYSTEMExcitationmodelSIGNALGENERATIONSYSTEMBIOELECTRICITYLinearModelSIGNALGENERATIONSYSTEMBIOELECTRICITYNonlinearModel2AvailablefeaturesBasicfeatures1Modernmethods2TemporalAnalysisSignalSegmentation:labeltheEEGsignalsbysegmentsofsimilarcharacteristics.BASICFEATURESMODERNMETHODSTemporalCriteriaBASICFEATURESMODERNMETHODSFrequencyAnalysisSuboptimalDFT,DCT,DWT;OptimalKLT(Karhunen-Loève)Demerits:completestatisticalinformation,nofastcalculation.BASICFEATURESMODERNMETHODSSignalParameterEstimationARmodel:Merits:OutperformDFTinfrequencyaccuracy.Demerits:sufferfrompoorestimationofparameters.Improvements:accurateorder&coefficients.MODERNMETHODSBASICFEATURESARcoefficientsestimationmethodsYule-Walkeraryule(x,p)Merits:ToeplitzmatrixLevinson-Durbin,fastest!!!Demerits:withwindowbadresolutionofPSDMODERNMETHODSBASICFEATURESARcoefficientsestimationmethodsCovariancemethodarcov(x,p),armcov(x,p)Merits:withoutwindowgoodresolutionofPSDDemerits:slowBurgarburg(x,p)Merits:accurateapproximationofPSDDemerits:lineskewing&splittingMODERNMETHODSBASICFEATURESMODERNMETHODSBASICFEATURESComparisonPrincipalComponentAnalysisUsesameconceptasSVDDecomposedataintouncorrelatedorthogonalcomponentsAutocorrelationmatrixisdiagonalizedEacheigenvectorrepresentsaprincipalcomponentApplicationdecomposition,classification,filtering,denoising,whitening.MODERNMETHODSBASICFEATURES3SparseRepresentationSparseApproximation1SparseDecomposition2Over-completedictionaryatomsHilbertspace:Signal:Error:“Sparse”:lN,satisfylimitederror.SPARSEAPPROXIMATIONSPARSEDECOMPOSITION,1,2,...kDdkKKNyHllrrrIyd(,)inflllyyDyyNHRMajoralgorithms:BasicPursuit,MatchingPursuits,OMPMatchingPursuits(MP):1st:kth:SPARSEDECOMPOSITIONSPARSEAPPROXIMATION0(1,...),,rikiydsupyd001,rryyddRy1(1,2,...),,kkrikkiRydsupRyd10,nnknrrknyRyddRy与正交nrd1kRyK-SVD:trainingdictionaryPotentialapplicationsforEEG:CoefficientsfeaturesERPdetectionAbnormalEEGdetectionClassificationofdifferentstatusofEEGSPARSEDECOMPOSITIONSPARSEAPPROXIMATION4ClassificationalgorithmsCommonmethods1NaïveBayesLDA:LinearDiscriminantAnalysisHMM:HiddenMarkovModellingSVM:SupportVectorMachineK-meansANNs:ArtificialNeuralNetworksFuzzyLogicCOMMONMETHODS5IndependentComponentAnalysisICAapproaches1Application2IndependentComponentAnalysisICAAPPROACHESAPPLICATIONSICAAPPROACHESAPPLICATIONSICAapproaches:FactorizingthejointPDFintoitsmarginalPDFsDecorrelatingsignalsthroughtimeEliminatingtemporalcross-correlationfunctionBSS:BlindSourceSeparationNormalbrainrhythms,event-relatedsourcesArtefactseyemovement&blinking,swallowAPPLICATIONSICAAPPROACHESTHANKS!

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功