芝麻教育七年级培优资料(内部使用)第一讲有理数一、和绝对值有关的问题知识结构框图:二、绝对值的意义:(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。也可以写成:||0aaaaaa当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。三、典型例题例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式|a|+|a+b|+|c-a|-|b-c|的值等于()A.-3aB.2c-aC.2a-2bD.b例2.已知:zx0,0xy,且xzy,那么yxzyzx的值()A.是正数B.是负数C.是零D.不能确定符号例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例4.(整体的思想)方程xx20082008的解的个数是()A.1个B.2个C.3个D.无穷多个例5.(非负性)已知|ab-2|与|a-1|互为相互数,试求下式的值.1111112220072007abababab例6.(距离问题)观察下列每对数在数轴上的对应点间的距离4与2,3与5,2与6,4与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:____.(2)若数轴上的点A表示的数为x,点B表示的数为―1,则A与B两点间的距离可以表示为____.四、课后练习1.如果a、b、c是非零实数,且a+b+c=0,那么||||||||abcabcccbbaa的所有可能的值为()A.0B.1或-1C.2或-2D.0或-22.已知abc≠0,且a+b+c=0,则代数式abccabbca222的值是()A.3B.2C.1D.03.已知199919991999200020002000200120012001,,199819981998199919991999200020002000abb则abc小结1.理解绝对值的代数意义和几何意义以及绝对值的非负性2.体会数形结合、分类讨论等重要的数学思想在解题中的应用第二讲代数式的化简求值问题一、知识链接1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。二、典型例题例1.若多项式xyxxxmx537852222的值与x无关,求mmmm45222的值.例2.x=-2时,代数式635cxbxax的值为8,求当x=2时,代数式635cxbxax的值。例3.当代数式532xx的值为7时,求代数式2932xx的值.例4.已知012aa,求2007223aa的值.例5.(实际应用)A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A公司,年薪一万元,每年加工龄工资200元;B公司,半年薪五千元,每半年加工龄工资50元。从收入的角度考虑,选择哪家公司有利?例6.三个数a、b、c的积为负数,和为正数,且bcbcacacababccbbaax,则123cxbxax的值是_______。例7.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线____上,“2008”在射线___________上.(2)若n为正整数,则射线OA上数字的排列规律可以用含n的代数式表示为__________________________.例8.将正奇数按下表排成5列:第一列第二列第三列第四列第五列第一行1357第二行1513119第三行17192123第四行31292725根据上面规律,2007应在()A.125行,3列B.125行,2列C.251行,2列D.251行,5列例9.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为kn2(其中k是使kn2为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果是__________.三、小结用字母代数实现了我们对数认识的又一次飞跃。希望同学们能体会用字母代替数后思维的扩展,体会一些简单的数学模型。体会由特殊到一般,再由一般到特殊的重要方法。ABDCEFO17283941051161226134411第一次F②第二次F①第三次F②…第三讲:与一元一次方程有关的问题一、知识回顾一元一次方程是我们认识的第一种方程,使我们学会用代数解法解决一些用算术解法不容易解决的问题。一元一次方程是初中代数的重要内容,它既是对前面所学知识——有理数部分的巩固和深化,又为以后的一元二次方程、不等式、函数等内容打下坚实的基础。典型例题:二、典型例题例1.若关于x的一元一次方程2332xkxk=1的解是x=-1,则k的值是()A.27B.1C.-1311D.0例2.若方程3x-5=4和方程0331xa的解相同,则a的值为多少?例3.(方程与代数式联系)a、b、c、d为实数,现规定一种新的运算bcaddcba.(1)则2121的值为;(2)当185)1(42x时,x=.例4.(方程的思想)如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.baaB.babC.habD.hah例5.小杰到食堂买饭,看到A、B两窗口前面排队的人一样多,就站在A窗口队伍的里面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人。此时,若小李迅速从A窗口队伍转移到B窗口后面重新排队,将比继续在A窗口排队提前30秒买到饭,求开始时,有多少人排队?不考虑瓶子的厚度.课外知识拓展:一、含字母系数方程的解法:思考:bax是什么方程?在一元一次方程的标准形式、最简形式中都要求a≠0,所以bax不是一元一次方程,我们把它称为含字母系数的方程。例6.解方程bax例7.问当a、b满足什么条件时,方程2x+5-a=1-bx:(1)有唯一解;(2)有无数解;(3)无解。例8.解方程11xxababab二、含绝对值的方程解法例9.解下列方程523x例10.解方程21513x例11.解方程121xx三、小结1、体会方程思想在实际中的应用2、体会转化的方法,提升数学能力第四讲:图形的初步认识一、相关知识链接:1.认识立体图形和平面图形我们常见的立体图形有长方体、正方体、球、圆柱、圆锥,此外,棱柱,棱锥也是常见的几何体。我们常见的平面图形有正方形、长方形、三角形、圆2.立体图形和平面图形关系立体图形问题常常转化为平面图形来研究,常常会采用下面的作法(1)画出立体图形的三视图立体图形的的三视图是指正视图(从正面看)、左视图(从左面看)、俯视图(从上面看)得到的三个平面图形。(2)立体图形的平面展开图常见立体图形的平面展开图圆柱、圆锥、三棱柱、三棱锥、正方体(共十一种)二、典型问题:(一)正方体的侧面展开图(共十一种)分类记忆:第一类,中间四连方,两侧各一个,共六种。第二类,中间三连方,两侧各有一、二个,共三种。第三类,中间二连方,两侧各有二个,只有一种。第四类,两排各三个,只有一种。三、典型例题例1在右面的图形中是正方体的展开图的有()(A)3种(B)4种(C)5种(D)6种思维拓展:如图四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是()A.①②③B.②③④C.①③④D.①②④例2下图可以沿线折叠成一个带数字的正方体,每三个带数字的面交于正方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是()A.7B.8C.9D.10思维拓展:一个正方体的展开图如右图所示,每一个面上都写有一个自然数并且相对两个面所写的两个数之和相等,那么a+b-2c=()A.40B.38C.36D.34例3将如图所示的正方体沿某些棱展开后,能得到的图形是()★★★★A.B.C.D.思维拓展:下图是某一立方体的侧面展开图,则该立方体是()(二)常见立体图形的平面展开图例4下列图形是四棱锥的展开图的是()(A)(B)(C)(D)c8425baA.B.C.D.思维拓展:下面是四个立体图形的展开图,则相应的立体图形依次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥例5如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果A面在长方体的底部,那么哪一个面会在上面?(2)若F面在前面,B面在左面,则哪一个面会在上面?(字母朝外)(3)若C面在右面,D面在后面,则哪一个面会在上面?(字母朝外)(三)立体图形的三视图例6对右面物体的视图描绘错误的是()例7如图,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是()A.3B.4C.5D.6(四)新颖题型例8正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为.例9观察下列由棱长为1的小正方体摆成的图形,寻找规律,如图⑴所示共有1个小立方体,其中1个看得见,0个看不见;如图⑵所示:共有8个小立方体,其中7个看得见,1个看不见;如图⑶所示:共有27个小立方体,其中19个看得见,8个看不见……(1)写出第⑹个图中看不见的小立方体有个;(2)猜想并写出第(n)个图形中看不见的小立方体的个数为________个.俯视图左视图主视图第五讲:线段和角一、知识结构图直线线段直线性质射线线段的比较和画法线段的中点线段性质两点间的距离角角的分类角的比较、度量和画法相关角角平分线平角直角锐角周角钝角余角和补角定义性质同角(或等角)的补角相等同角(或等角)的余角相等二、典型问题:(一)数线段——数角——数三角形问题1、直线上有n个点,可以得到多少条线段?问题2、如图,在∠AOB内部从O点引出两条射线OC、OD,则图中小于平角的角共有()个。(A)3(B)4(C)5(D)6拓展:1、在∠AOB内部从O点引出n条射线图中小于平角的角共有多少个?类比:从O点引出n条射线图中小于平角的角共有多少个?类比联想:如图,可以得到多少三角形?(二)与线段中点有关的问题线段的中点定义:文字语言:若一个点把线段分成相等的两部分,那么这个点叫做线段的中点图形语言:MBA几何语言:∵M是线段AB的中点∴12AMBMAB,22AMBMAB三、典型例题例1由下列条件一定能得到“P是线段AB的中点”的是()(A)AP=21AB(B)AB=2PB(C)AP=PB(D)AP=PB=21AB思维拓展:若点B在直线AC上,下列表达式:①ACAB21;②AB=BC;③AC=2AB;④AB+BC=AC.其中能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个例2已知线段MN,P是MN的中点,Q是PN的中点,R是MQ的中点,那么MR=______MN.思维拓展:如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A2(a-b)B2a-bCa+bDa-b(三)与角有关的问题例3已知:一条射线OA,若从点O再引两