导入新课讲授新课当堂练习课堂小结4.5一次函数的应用第4章一次函数学练优八年级数学下(XJ)教学课件第2课时利用一次函数模型解决预测类型的实际问题1.巩固一次函数知识,灵活运用变量关系解决相关实际问题;2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力;(重点)3.认识数学在现实生活中的意义,提高运用数学知识解决实际问题的能力.(难点)学习目标导入新课回顾与思考小明同学在探索鞋码的两种长度“码”与“厘米”之间的换算关系时,通过调查获得下表数据:x(厘米)…2225232624…y(码)…3440364238…根据表中提供的信息,在同一直角坐标系中描出相应的点,你能发现这些点的分布有什么规律吗?3032383634424023252421222726y(码)x(厘米)据说篮球巨人姚明的鞋子长31cm,那么你知道他穿多大码的鞋子吗?52码,你是怎么判断的呢?O讲授新课一次函数模型的应用现实生活或具体情境中的很多问题或现象都可以抽象成数学问题,并通过建立合适的数学模型来表示数量关系和变化规律,再求出结果并讨论结果的意义.下面有一个实际问题,你能否利用已学的知识给予解决?问题:奥运会每4年举办一次,奥运会的游泳成绩在不断的被刷新,如男子400m自由泳项目,1996年奥运冠军的成绩比1960年的约提高了30s,下面是该项目冠军的一些数据:根据上面资料,能否估计2012年伦敦奥运会时该项目的冠军成绩?年份冠军成绩/s1980231.311984231.231988226.951992225.001996227.97年份冠军成绩/s2000220.592004223.102008221.862012?2016?解:(1)以1980年为零点,每隔4年的年份的x值为横坐标,相应的y值为纵坐标,即(0,231.31),(1,231.23)等,在坐标系中描出这些对应点.O(1980)2301(1984)2(1988)3(1992)4(1996)5(2000)6(2004)7(2008)8(2012)y/sx/年210220200240(2)观察描出的点的整体分布,它们基本在一条直线附近波动,y与x之间的函数关系可以用一次函数去模拟.即y=kx+b.O(1980)2301(1984)2(1988)3(1992)4(1996)5(2000)6(2004)7(2008)8(2012)y/sx/年210220200240········这里我们选取从原点向右的第1个点(1,231.23)及第7个点(7,221.86)的坐标代入y=kx+b中,得k+b=231.23,7k+b=221.86.解得k=-1.63,b=232.86所以,一次函数的解析式为y=-1.63x+232.86.(3)当把1980年的x值作为0,以后每增加4年得x的一个值,这样2012年时的x值为8,把x=8代入上式,得y=-1.63×8+232.86=219.82(s)因此,可以得到2012年奥运会男子的自由泳的400m的冠军的成绩约是219.82s•2012年伦敦奥运会中国选手孙杨以220.14s的成绩打破男子400m自由泳项目奥运会纪录获得冠军,你对你预测的准确程度满意吗?归纳总结通过上面的学习,我们知道建立两个变量之间的函数模型,可以通过下列几个步骤完成:(1)将实验得到的数据在直角坐标系中描出;(2)观察这些点的特征,确定选用的函数形式,并根据已知数据求出具体的函数表达式;(3)进行检验;(4)应用这个函数模型解决问题.全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地100万平方千米,沙漠200万平方千米,土地沙漠化的变化情况如下图所示.当堂练习(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?10万千米2(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2.第50年底后第12年底课堂小结一次函数模型的应用①将实验得到的数据在直角坐标系中描出②观察这些点的特征,确定选用的函数形式,并根据已知数据求出具体的函数表达式③进行检验④应用这个函数模型解决问题见《学练优》本课时练习课后作业