二阶变系数线性非齐次微分方程的通解公式

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

[]2007-04-23[](1970),,,,;(1979),,,,,(,100101)[]为了更多地得到理论上和应用上占有重要地位的二阶变系数线性非齐次微分方程的通解,这里使用常数变易法,在先求得二阶变系数线性齐次微分方程一个特解的情况下,将二阶变系数线性非齐次微分方程转化为可降阶的微分方程,从而给出了一种运算量较小的二阶变系数线性非齐次微分方程通解的一般公式,并且将通解公式进行了推广,实例证明该方法是可行的[]二阶变系数线性非齐次微分方程;通解;特解[]O175[]A[]1005-0310(2007)04-0074-03y+p(x)y+q(x)y=f(x)(1),,([1])(1)p(x),q(x)([2])r2+p(x)r+q(x)0(2)(rR),,(1)y=u(x)v(x)uvu=u(x),v=v(x),y=uv(1)y=uv+uv,y=uv+2uv+uvy,y,y(1)uv+(2u+p(x)u)v+(u+p(x)u+q(x)u)v=f(x)(3)u=u(x)(3)u+p(x)u+q(x)u=0(4)(4),[2]p(x),q(x)(2),(4)u=erx(5)v=v(x)(4)(3)v+2uu+p(x)v=f(x)u(6)(6)(6)(v=v(x))v=1u2e-p(x)dxf(x)uep(x)dxdx+c1dx+c2p(x)dx,f(x)uep(x)dxdx1u2e-p(x)dxf(x)uep(x)dxdx+c1dx,c1c2(1)y=erx1u2e-p(x)dxf(x)uep(x)dxdx+c1dx+c2,(1):(1),p(x),q(x),r(2),(1)y=erx1u2e-p(x)dxf(x)uep(x)dxdx+c1dx+c2(7)20071221470()JournalofBeijingUnionUniversity(NaturalSciences)Dec.2007Vol.21No.4SumNo.70p(x)dx,f(x)uep(x)dxdx1u2e-p(x)dxdxf(x)uep(x)dxdx+c1dx,c1c21y-1xy-9+3xy=xe3x:[2]r=-3,y-1xy-9+3xy=0u=e-3xp(x)=-1x,f(x)=xe3x,(7)y=e-3xe6xe1xdxxe3xe-3xe-1xdxdx+c1dx+c2=e-3xxe6x(dx+c1)dx+c2=e-3xxe6x(x+c1)dx+c2=e-3x16x2e6x+c16-118xe6x+1108-c136e6x+c2=16x2e3x+c16-118xe3x+1108-c136e3x+c2e-3x2y+2+1xy+1+1xy=xe-x:[2]r=-1,y+2+1xy+1+1xy=0u=e-xp(x)=2+1x,f(x)=xe-x,(7)y=e-xe2xe-2+1xdxxe-xe-xe2+1xdxdx+c1dx+c2=e-x1x(x2dx+c1)dx+c2=e-x13x2+c1xdx+c2=19x3e-x+c1e-xln|x|+c2e-x:r2+p(x)r+q(x)0,,,(1)u=u(x),(7)(1)Liouville([3])3y+2xy+y=1xcosx:y+2xy+y=0u=sinxxp(x)=2x,f(x)=1xcosx,(7)y=sinxxx2sin2xe-2xdxcosxxsinxxe2xdxdx+c1dx+c2=sinxx1sin2x(sinxcosxdx+c1)dx+c2=sinxx12+c1csc2xdx+c2=sinxx12x-c1cotx+c2=12sinx-c1xcosx+c2xsinx[][1].[J].,2002,5(2):10-13.[2],.[J].,2006,9(3):22-24.[3],.[M].2.:,1983.[4].[J].:,2007,21(8):136-141.[5],,.[J].,2003,17(6):38-39.75214:TheFormulaofGeneralSolutiontoSecondOrderLinearDifferentialEquationwithVariableCoefficientsXINGChun-feng,YUANAn-feng(BasicCoursesDepartmentofBeijingUnionUniversity,Beijing100101,China)Abstract:Inordertoobtainmoregeneralsolutiontosecondorderlineardifferentialequationwithvariablecoefficientswhichisimportantintheoryandpractice,onthebasisofknowingaspecialsolutionofthesecondorderlineardifferentialequationwithvariablecoefficientsandbyusingthemethodofvariationofconstant,thesecondorderlineardifferentialequationwithvariablecoefficientsistransferredtothereduceddifferentialequationandageneralformulaofthesecondorderlineardifferentialequationwithvariablecoefficientsisderived.Examplesaregiventoverifythemethod.Keywords:secondorderlineardifferentialequationwithvariablecoefficients;generalsolution;particularsolution(责任编辑)(上接第70页)TheConvergenceofQuasi-NewtonMethodsforUnconstrainedOptimizationWANGL-iwei,LIUDa-lian(BasicCoursesDepartmentofBeijingUnionUniversity,Beijing100101,China)Abstract:AclassofalgorithmswhichareupdateQuas-iNewtonmethodsforunconstrainedoptimizationareasfollows:minf(x),xRn.Theproofoftheglobalandsuperlinearlyconvergenceofthegeneralized-quas-iNewtonmethordsisproposed.Threemaintheoremsaregiven.Keywords:generalized-quas-iNewtonalgorithms;superlinearlyconvergence;uncontrainedoptimization(责任编辑)76()200712

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功