Linux系统调用入门手册

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1-1本文是Linux系统调用系列文章的第一篇,对Linux系统调用的定义、基本原理、使用方法和注意事项大概作了一个介绍,以便读者对Linux系统调用建立一个大致的印象。什么是系统调用?Linux内核中设置了一组用于实现各种系统功能的子程序,称为系统调用。用户可以通过系统调用命令在自己的应用程序中调用它们。从某种角度来看,系统调用和普通的函数调用非常相似。区别仅仅在于,系统调用由操作系统核心提供,运行于核心态;而普通的函数调用由函数库或用户自己提供,运行于用户态。二者在使用方式上也有相似之处,在下面将会提到。随Linux核心还提供了一些C语言函数库,这些库对系统调用进行了一些包装和扩展,因为这些库函数与系统调用的关系非常紧密,所以习惯上把这些函数也称为系统调用。Linux中共有多少个系统调用?这个问题可不太好回答,就算让LinusTorvaldz本人也不见得一下子就能说清楚。在2.4.4版内核中,狭义上的系统调用共有221个,你可以在内核源码目录/include/asm-i386/unistd.h中找到它们的原本,也可以通过命令man2syscalls察看它们的目录(manpages的版本一般比较老,可能有很多昀新的调用都没有包含在内)。广义上的系统调用,也就是以库函数的形式实现的那些,它们的个数从来没有人统计过,这是一件吃力不讨好的活,新内核不断地在推出,每一个新内核中函数数目的变化根本就没有人在乎,至少连内核的修改者本人都不在乎,因为他们从来没有发布过一个此类的声明。随本文一起有一份经过整理的列表,它不可能非常全面,但常见的系统调用基本都已经包含在内,那里面只有不多的一部分是你平时用得到的,本专栏将会有选择的对它们进行介绍。为什么要用系统调用?实际上,很多已经被我们习以为常的C语言标准函数,在Linux平台上的实现都是靠系统调用完成的,所以如果想对系统底层的原理作深入的了解,掌握各种系统调用是初步的要求。进一步,若想成为一名Linux下编程高手,也就是我们常说的Hacker,其标志之一也是能对各种系统调用有透彻的了解。即使除去上面的原因,在平常的编程中你也会发现,在很多情况下,系统调用是实现你的想法的简洁有效的途径,所以有可能的话应该尽量多掌握一些系统调用,这会对你的程序设计过程带来意想不到的帮助。系统调用是怎么工作的?一般的,进程是不能访问内核的。它不能访问内核所占内存空间也不能调用内核函数。CPU硬件决定了这些(这就是为什么它被称作保护模式)。系统调用是这些规则的一个例外。其原理是进程先用适当的值填充寄存器,然后调用一个特殊的指令,这个指令会跳到一个事先定义的内核中的一个位置(当然,这个位置是用户进程可读但是不可写的)。在IntelCPU中,这个由中断0x80实现。硬件知道一旦你跳到这个位置,你就不是在限制模式下运行的用户,而是作为操作系统的内核--所以你就可以为所欲为。进程可以跳转到的内核位置叫做sysem_call。这个过程检查系统调用号,这个号码告诉内核进程请求哪种服务。然后,它查看系统调用表(sys_call_table)找到所调用的内核函数入口地址。接着,就调用函数,等返回后,做一些系统检查,昀后返回到进程(或到其他进程,如果这个进程时间用尽)。如果你希望读这段代码,它在内核源码目录/kernel/entry.S,Entry(system_call)的下一行。如何使用系统调用?先来看一个例子:#includelinux/unistd.h/*定义宏_syscall1*/#includetime.h/*定义类型time_t*/_syscall1(time_t,time,time_t*,tloc)/*宏,展开后得到time()函数的原型*/main(){time_tthe_time;the_time=time((time_t*)0);/*调用time系统调用*/printf(Thetimeis%ld\n,the_time);}系统调用time返回从格林尼治时间1970年1月1日0:00开始到现在的秒数。这是昀标准的系统调用的形式,宏_syscall1()展开来得到一个函数原型,稍后我会作详细解释。但事实上,如果把程序改成下面的样子,程序也可以运行得同样的结果。#includetime.hmain(){time_tthe_time;the_time=time((time_t*)0);/*调用time系统调用*/printf(Thetimeis%ld\n,the_time);}1-2这是因为在time.h中实际上已经用库函数的形式实现了time这个系统调用,替我们省掉了调用_syscall1宏展开得到函数原型这一步。大多数系统调用都在各种C语言函数库中有所实现,所以在一般情况下,我们都可以像调用普通的库函数那样调用系统调用,只在极个别的情况下,我们才有机会用到_syscall*()这几个宏。_syscall*()是什么?在unistd.h里定义了7个宏,分别是_syscall0(type,name)_syscall1(type,name,type1,arg1)_syscall2(type,name,type1,arg1,type2,arg2)_syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)_syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)_syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,type5,arg5)_syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,type5,arg5,type6,arg6)它们看起来似乎不太像宏,但其实质和#defineMAXSIZE100里面的MAXSIZE没有任何区别。它们的作用是形成相应的系统调用函数原型,供我们在程序中调用。我们很容易就能发现规律,_syscall后面的数字和typeN,argN的数目一样多。事实上,_syscall后面跟的数字指明了展开后形成函数的参数的个数,让我们看一个实例,就是刚刚用过的time系统调用:_syscall1(time_t,time,time_t*,tloc)展开后的情形是这样:time_ttime(time_t*tloc){long__res;__asm__volatile(int$0x80:=a(__res):0(13),b((long)(tloc)));do{if((unsignedlong)(__res)=(unsignedlong)(-125)){errno=-(__res);__res=-1;}return(time_t)(__res);}while(0);}可以看出,_syscall1(time_t,time,time_t*,tloc)展开成一个名为time的函数,原参数time_t就是函数的返回类型,原参数time_t*和tloc分别构成新函数的参数。事实上,程序中用到的time函数的原型就是它。errno是什么?为防止和正常的返回值混淆,系统调用并不直接返回错误码,而是将错误码放入一个名为errno的全局变量中。如果一个系统调用失败,你可以读出errno的值来确定问题所在。errno不同数值所代表的错误消息定义在errno.h中,你也可以通过命令man3errno来察看它们。需要注意的是,errno的值只在函数发生错误时设置,如果函数不发生错误,errno的值就无定义,并不会被置为0。另外,在处理errno前昀好先把它的值存入另一个变量,因为在错误处理过程中,即使像printf()这样的函数出错时也会改变errno的值。系统调用兼容性好吗?很遗憾,答案是--不好。但这决不意味着你的程序会三天两头的导致系统崩溃,因为系统调用是Linux的内核提供的,所以它们工作起来非常稳定,对于此点无需丝毫怀疑,在绝大多数的情况下,系统调用要比你自己编写的代码可靠而高效的多。但是,在Linux的各版本内核之间,系统调用的兼容性表现得并不像想象那么好,这是由Linux本身的性质决定的。Linux是一群程序设计高手利用业余时间开发出来的,他们中间的大部分人没有把Linux当成一个严肃的商业软件,(现在的情况有些不同了,随着Linux商业公司和以Linux为生的人的增长,不少人的脑筋发生了变化。)结果就是,如果新的方案在效率和兼容性上发生了矛盾,他们往往舍弃兼容性而追求效率,就这样,如果他们认为某个系统调用实现的比较糟糕,他们就会毫不犹豫的作出修改,有些时候甚至连接口也一起改掉了,更可怕的是,很多时候,他们对自己的修改连个招呼也不打,在任何文档里都找不到关于修改的提示。这样,每当新内核推出的时候,很可能都会悄悄的更新一些系统调用,用户编制的应用程序也会跟着出错。说到这里,你是不是感觉前途一片昏暗呢?呵呵,不用太紧张,如前面所说,随着越来越多的人把Linux当成自己的饭碗,不兼容的情况也越来越罕见。从2.2版本以后的Linux内核已经非常稳定了,不过尽管如此,你还是有必要在每个新内核推出之后,对自己的应用程序进行兼容性测试,以防止意外的发生。该如何学习使用Linux系统调用呢?你可以用man2系统调用名称的命令来查看各条系统调用的介绍,但这首先要求你要有不错的英语基础,其次还得有一定的程序设计和系统编程的功底,manpages不会涉及太多的应用细节,因为它只是一个手册而非教程。如果manpages所提供的东西不能使你感到非常满意,那就跟我来吧,本专栏将向你展示Linux系统调用编程的无穷魅力。对读者的两点小小的要求:1)读者必须有一定的C语言编程经验;2)读者必须有一定的Linux使用经验。如果你能完全看懂本文从开头到这里所讲的东西,你就合格了。收拾好行囊,准备出发吧!进程管理2-1本文介绍了Linux下的进程概念,并着重讲解了与Linux进程管理相关的4个重要系统调用getpid,fork,exit和_exit,辅助一些例程说明了它们的特点和使用方法。关于进程的一些必要知识先看一下进程在大学课本里的标准定义:“进程是可并发执行的程序在一个数据集合上的运行过程。”这个定义非常严谨,而且难懂,如果你没有一下子理解这句话,就不妨看看笔者自己的并不严谨的解释。我们大家都知道,硬盘上的一个可执行文件经常被称作程序,在Linux系统中,当一个程序开始执行后,在开始执行到执行完毕退出这段时间里,它在内存中的部分就被称作一个进程。当然,这个解释并不完善,但好处是容易理解,在以下的文章中,我们将会对进程作一些更全面的认识。Linux进程简介Linux是一个多任务的操作系统,也就是说,在同一个时间内,可以有多个进程同时执行。如果读者对计算机硬件体系有一定了解的话,会知道我们大家常用的单CPU计算机实际上在一个时间片断内只能执行一条指令,那么Linux是如何实现多进程同时执行的呢?原来Linux使用了一种称为“进程调度(processscheduling)”的手段,首先,为每个进程指派一定的运行时间,这个时间通常很短,短到以毫秒为单位,然后依照某种规则,从众多进程中挑选一个投入运行,其他的进程暂时等待,当正在运行的那个进程时间耗尽,或执行完毕退出,或因某种原因暂停,Linux就会重新进行调度,挑选下一个进程投入运行。因为每个进程占用的时间片都很短,在我们使用者的角度来看,就好像多个进程同时运行一样了。在Linux中,每个进程在创建时都会被分配一个数据结构,称为进程控制块(ProcessControlBlock,简称PCB)。PCB中包含了很多重要的信息,供系统调度和进程本身执行使用,其中昀重要的莫过于进程ID(processID)了,进程ID也被称作进程标识符,是一个非负的整数,在Linux操作系统中唯一地标志一个进程,在我们昀常使用的I386架构(

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功