第1章信号与系统的概述1.6本章习题全解1.1已知信号波形,写出信号表达式。(a)(b)解:(a)()()(1)(1)fttuttut(b)()(1)(2)(3)ftttt1.2已知信号的数学表达式,求信号波形。(1))]2()1()[2cos()(tututetft(2))1()1(21)(tututtf(3)0)()](sin[)(nntunttf(4)1)()()(nntuttutf(5))]sgn[sin()(ttf(6))4sin(]()([)(tTTtututf解:(1)信号区间在[1,2]之间,振荡频率为2,周期为1,幅值按te趋势衰减,波形如图1-2-1;(2)信号区间在[-1,1]之间,在[-1,0]区间呈上升趋势,在[0,1]区间呈下降趋势,波形如图1-2-2;tf(t)f(t)t-11011/2图1-2-1图1-2-2(3)信号为正弦信号经时移的叠加而成,由于每次时移间隔为半个周期,所以偶次时移与奇次时移的结果相抵消,结果如图1-2-3;(4)结果如图1-2-4f(t)f(t)tt......012345670123411图1-2-3图1-2-4(5)结果如图1-2-5-11f(t)t-4-3-2-101234......图1-2-5(6)结果如图1-2-6f(t)t0T/83T/85T/87T/8T图1-2-61.3分别求下列各周期信号的周期(1))20cos()10cos(tt(2)tje5(3)(1)()()nnutnTutnTT(n为正整数,T为周期)解:(1)cos(10())cos(1010)tTtT当满足102Tk(k为整数)时,cos(1010)cos(10)tTt即k=1时,5/T为cos(10)t的周期,同理,cos(20)t的周期为10/;所以)20cos()10cos(tt的周期为10/。(2)5()(55)55jtTjtTjtjTeeee当满足52Tk(k为整数)时,51jTe,即5()5jtTjtee,即k=1时,52T为tje5的周期(3)根据表达式,可画出信号的波形为-11t-4T-3T-2T-T0T2T3T4T......(1)()()nnutnTutnTT从图中可以看出周期为2T。1.4求下列表示式的函数值(1)dtttt)()(0(2)dtttt)2sin()(2(3)dtttutt)3()(00(4)dtttt)6()sin((5)dttttetj)]()([0(6)22)(cos)1(dttt(7)已知)3(2)(ttf求0)25(dttf解:(1)0000()()()()tttdtttdtttdtt(2)sin(2)sin(2)2()4()4()42tttdttdttdttt(3)000000002()()()()()()()333tttttutdtttutdtuttdtut(4)(sin)()(sin)()66661(sin)()66662tttdttdttdt(5)000[()()]()()1jtjtjtjtetttdtetdtettdte(6)2222222200(1)(cos)(cos)(cos)32(cos)2()()422ttdttdtttdttdtttdt上式中(cos)t为偶函数,(cos)tt为奇函数(7)000011(52)2(52(3))2(112)2(2())12ftdttdttdttdt1.5已知信号)(tf的波形如下图1.5所示,试画出下列各信号的波形(1))32(tf(2))()2(tutf(3))2()2(tutf题图1-5解:(1)先将)(tf在横坐标轴上向右平衡3,再进行压缩,得波形如图1-5-1;0121f(t-3)t421f(2t-3)t图1-5-1(2)过程及结果如图1-5-2所示;1f(t-2)t0131f(-t-2)t-3-101f(-t-2)u(-t)t-3-10图1-5-2(3)过程及结果如图1-5-3所示;1f(t)u(t)01t1f(t+2)u(t+2)-2-10t1f(-t+2)u(-t+2)012t图1-5-31.6已知)25(tf的波形如图1-6所示,试画出)(tf的波形。题图1-6解:本题有两种求解方式:解法一:(1)将信号以纵坐标为轴翻褶,得(25)ft波形(2)将(25)ft的波形在横坐标上扩伸2倍,得(5)ft波形(3)将(5)ft的波形向右移动5,得()ft的波形-3-2-10tf(2t+5)-6-4-20tf(t+5)-10123tf(t)图1-6-1解法二:(1)将信号以波形向右移动5/2,得(2)ft波形(2)将(2)ft波形的在横坐标上扩伸2倍,得()ft波形(3)将()ft的波形以纵坐标为轴翻褶,得()ft的波形;-1.500.5tf(-2t)-3-101tf(-t)-10123tf(t)图1-6-21.7求下列函数的微分和积分(1)tttf3cos)()(1(2)ttutf2sin)()(2(3))()(23tetft解:(1)1()()cos3()()tttfdddut(2)201()()sin2sin2()(1cos2)()2tttfdudduttut(3)23()()()()tttfdeddut1.8试证明:)(1)(taat证明:1.9粗略画出题图1.7所示各波形的奇、偶分量taattttaatdtttaadaadttat111011的偶函数是关于又因而有:题图1.7解:(1)根据信号的奇、偶分量的定义,现求出()ft)]()([21)(tftftfe)]()([21)(tftftfo01tf(t)1-10tf(-t)1-101tfo(t)1/2-101tfe(t)1/2-1/2图1-9-1-101tf(t)1-101tf(-t)1-1-1-101tfo(t)1-1-101tfe(t)1-1图1-9-21.10试证明因果信号)(tf的奇分量)(tfo和偶分量)(tfe之间存在关系式)sgn()()(ttftfeo证明:因为)(tf为因果信号所以,()()()ftftut所以,11()()()()()()()22oftftftftutftut1()()()()()2eftftutftut所以,1()sgn()()()()()sgn()21()()sgn()()()sgn()21()()()()2()eofttftutftuttftuttftuttftutftutft证毕1.11分别求出下列各波形的直流分量(1)全波整流)sin()(ttf;(2)升余弦函数)]cos1[)(tKtf解:求解信号波形的直流分量,实际上即为求解信号的平均值,对于周期信号,只需求一个周期内的平均值即可。(1)tsin的周期为221,所以其直流分量为:000cos1sin1tdttdttfTfTD2111(2)因为tcos在一个周期内均值为0,所以KfD1.12画出下列系统的框图(1)dttdxtxtydttdy)()(3)(5)(2(2))()()(2)(4)(txdttdxtydttdydttyd22解:(1)系统方程两边同除以2,得()531()()()222dytdxtytxtdtdtΣΣ∫'()ft()ft()xt5/21/23/2()yt图1-13-1(2)ΣΣ∫'()ft()ft()xt24()yt∫''()ft图1-13-21.13判断下列系统是否为线性的、时不变的、因果性(1))()](cos[)(tutxty(2))(]cos)([)(tuttxty(3)dttdxty)()((4))()(2txty(5)tdxty5)()((6))2()(31)(txtxty(7))()(txty(8)nnTttxty)()()(解:(1)()()cos[()]()ytTxtxtut111()()cos[()]()ytTxtxtut,222()()cos[()]()ytTxtxtut1212()()cos[()()]()Taxtbxtaxtbxtut1212()(){cos[()]cos[()]}()aytbytaxtbxtut1212()()[()()]aytbytTaxtbxt即系统非线性()cos[()]()Txtxtut()cos[()]()ytxtut()[()]ytTxt即系统为时变系统由于任意时刻的输出只与时刻的输入有关,而与时刻以后的输入无关,所以系统是因果系统。所以,该系统是非线性、时变、因果系统。(2)()()[()cos]()ytTxtxttut111()()()cos()ytTxtxttut,222()()()cos()ytTxtxttut1212()()[()()]cos()Taxtbxtaxtbxttut1212()()[()()]cos()aytbytaxtbxttut1212()()[()()]aytbytTaxtbxt即系统线性()()cos()Txtxttut()()cos()()ytxttut()[()]ytTxt即系统为时变系统由于任意时刻的输出只与时刻的输入有关,而与时刻以后的输入无关,所以系统是因果系统。所以,该系统是线性、时变、因果系统。(3)()()()dxtytTxtdt111()()()dxtytTxtdt,222()()()dxtytTxtdt121212()()()()[()()]dxtdxtdTaxtbxtaxtbxtabdtdtdt1212()()()()dxtdxtaytbytabdtdt1212()()[()()]aytbytTaxtbxt即系统线性()()dxtTxtdt()()()()dxtdxtytdtdt()[()]ytTxt即系统为时不变系统由于任意时刻的输出只与时刻的输入的微分有关,而与时刻以后的输入无关,所以系统是因果系统。所以,该系统是线性、时不变、因果系统。(4)2()()()ytTxtxt2111()()()ytTxtxt,2222()()()ytTxtxt2222212121212()()[()()]()()2()()Taxtbxtaxtbxtaxtbxtabxtxt221212()()()()aytbytaxtbxt1212()