第二章一元二次方程2用配方法求解一元二次方程广东学导练数学九年级全一册配北师大版上册课前预习1.通过配成___________________解一元二次方程的方法,叫做配方法.2.方程x2=2的根为_____________.方程(x-2)2=9的根为_______________.3.填空:(1)x2+6x+_______=(x+_______)2;(2)x2-x+_______=(x-_______)2;(3)4x2+4x+_______=(2x+_______)2;(4)2x2+x+_______=2(x+_______)2.完全平方式x1=5,x2=-193114.用配方法解方程:x2-2x-4=0.解:把方程的常数项移到等号的右边,得x2-2x=4.方程两边同时加上一次项系数一半的平方,得x2-2x+1=4+1,即(x-1)2=5.名师导学新知配方法定义:通过配成完全平方式的方法得到一元二次方程的根,这种解一元二次方程的方法称为配方法.配方法的理论根据是完全平方公式:a2±2ab+b2=(a±b)2.把公式中的a看作未知数x,并用x代替则有x2±2bx+b2=(x±b)2.注意:通过配方,要将原方程左边化为一个完全平方式,右边则为一个常数.【例】用配方法解下列方程:(1)x2+2x-1=0;(2)2x2-4x-3=0.解析对于(1),方程常数项移到右边,两边加上1变形,左边配成一个完全平方式再开方即可求出解;对于(2),要先将二次项系数化为1,再配方.举一反三1.配方:填上适当的数,使下列等式成立:(1)x2+12x+________=(x+6)2;(2)x2-12x+________=(x-________)2;(3)x2+8x+________=(x+________)2.2.用配方法解下列方程:(1)x2-10x+25=7;(2)3x2-10x+6=0.36366164