初一上学期动点、动角问题练习1.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;2.将一副三角板如图1摆放.∠AOB=60°,∠COD=45°,OM平分AOD,ON平分∠COB.(1)∠MON=______;(2)将图1中的三角板OCD绕点D旋转到图2的位置,求∠MON;(3)将图1中的三角板OCD绕点D旋转到图3的位置,求∠MON.3.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.4.如图1,射线OC、OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM、ON分别平分∠AOD、∠BOC,(1)求∠MON的大小,并说明理由;(2)如图2,若∠AOC=15°,将∠COD绕点O以每秒x°的速度逆时针旋转10秒钟,此时∠AOM︰∠BON=7︰11,如图3所示,求x的值.(3)如图4,若旋转后OC恰好为∠MOA的角平分线,试探究∠NOD与∠MOC的数量关系.图45.已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为______,点B表示的数为______,点C表示的数为______;(2)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______;(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.①在点Q向点C运动过程中,能否追上点P?若能,请求出点Q运动几秒追上.②在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.6.已知一副三角板如图摆放,∠DCE=30°,现将∠DCE绕C点以15°/s速度逆时针旋转,时间为t(s)(1)t为多少时,CD恰好平分∠BCE?请在图2中自己画图,并说明理由.(2)当6t8,CM平分∠ACE,CN平分∠BCD,求∠MCN,在图3中完成.(3)当8t12时,(2)中结论是否发生变化?请在图4中完成.(4)当12T24时,会出现不一样的结论吗?7.已知数轴上有A、B、C三点表示-24、-10、10,两只电子蚂蚁甲、已分别从A、C两点同时相向而行,甲的速度为4单位/秒。(1)问多少秒后甲到A、B、C的距离和为40个单位。(2)若已的速度给6单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的那个点相遇?(3)在(1)(2)的条件下,当甲到A、B、C的距离和为40个单位时,甲掉头返回,问甲、乙还能在数轴上相遇吗?若能,请求出相遇点,若不能,请说明理由。8.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.9.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,-10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC-AB的值是否随着时间t的变化而改变?请说明理由;(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.10.已知,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=30°,求∠DOE的度数;(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,满足:∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.11.已知:线段AB=20cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B点向A点以3厘米/秒运动,经过4秒,点P、Q两点能相遇.(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发2秒后,点Q沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距5cm?(3)如图2:AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.12.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求PQ/AB的值。(3)在(1)的条件下,若C、D运动5秒后,恰好有CD=1/2AB,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;②MN/AB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值。