《用图像表示变量之间的关系》练习题21.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()2.某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m(吨)与时间t(小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是()A.8.4小时B.8.6小时C.8.8小时D.9小时3.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多4.如图,其图象反映的过程是:张强从家去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象,下列回答正确的是()A.张强在体育场锻炼45分钟B.张强家距离体育场是4千米C.张强从离家到回到家一共用了200分钟D.张强从家到体育场的平均速度是10千米/小时5.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲队率先到达终点B.比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的速度快C.乙队比甲队少用0.2分钟D.甲队比乙队多走了200米路程6.一家电信公司给顾客提供两种上网收费方式:方式A以毎分0.1元的价格按上网所用时间计费;方式B除收月基费20元外,再以毎分0.05元的价格按上网所用时间计费.若上网所用时间为x分,计费为y元,如图,是在同一直角坐标系中,分别描述两种计费方式的函数的图象.有下列结论:①图象甲描述的是方式A;②图象乙描述的是方式B;③当上网所用时间为500分时,选择方式方法B省钱.其中,正确结论的个数是()A.3B.2C.1D.07.为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.80元/度计算(未超过部分仍按每度电0.50元计算).现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()8.如图,爸爸从家(点O)出发,沿着扇形AOB上OA→→BO的路径去匀速散步,设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()9.时钟在正常运行时,时针和分针的夹角会随着时间的变换而变化,设时针与分针的夹角为y度,运行时间为t分,当时间从3:00开始到3:30止,图中能大致表示y与t之间的函数关系的图象是()10.如图,在矩形ABCD中,AB=6cm,BC=4cm.动点E从点B出发,沿着线路BC→CD→DA运动,在BC段的平均速度是1cm/s,在CD段的平均速度是2cm/s,在DA段的平均速度是4cm/s,到点A停止.设△ABE的面积为y(cm2),则y与点E的运动时间t(s)的函数关系图象大致是()11.如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是()12.根据如图所示程序计算函数值,若输入的x的值为2.5,则输出的函数值为()A、1.5B、0.4C、0.16D、6.251题3题2题4题5题6题12题13题14题13.小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是()A.14分钟B.17分钟C.18分钟D.20分钟14.一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示,则下列结论错误的是()A.摩托车比汽车晚到1hB.A,B两地的路程为20kmC.摩托车的速度为45km/hD.汽车的速度为60km/h15.如图,正方形的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()16.小英早上从家里骑车上学,途中想到社会实践调查资料忘带了,立刻原路返回,返家途中遇到给她送资料的妈妈,接过资料后,小英加速向学校赶去.能反映她离家距离s与骑车时间t的函数关系图象大致是()17.王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料.如图,是王芳离家的距离与时间的函数图象.若黑点表示王芳家的位置,则王芳走的路线可能是()18.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()19.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是()20.一水池有甲、乙、丙三个水管,其中甲、丙两管为进水管,乙管为出水管.单位时间内,甲管水流量最大,丙管水流量最小.先开甲、乙两管,一段时间后,关闭乙管开丙管,又经过一段时间,关闭甲管开乙管.则能正确反映水池蓄水量y(立方米)随时间t(小时)变化的图象是()21.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图象是()22.新学年到了,爷爷带小红到商店买文具.从家中走了20分钟到一个离家900米的商店,在店里花了10分钟买文具后,用了15分钟回到家里.下面图形中表示爷爷和小红离家的距离y(米)与时间x(分)之间函数关系的是()23.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是图中()27题28题24.如图中的每次个图是由若干盆花组成的四边形图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案中花盆的总数是S,按此规律推断,S与n的函数关系式是()A.S=n2B.S=4nC.S=4n﹣4D.S=4n+425.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,826.如图,一艘旅游船从A点驶向C点.旅游船先从A点沿以D为圆心的弧AB行驶到B点,然后从B点沿直径行驶到圆D上的C点.假如旅游船在整个行驶过程中保持匀速,则下面各图中,能反映旅游船与D点的距离随时间变化的图象大致是()27.由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱的时间t(天)的关系如图所示,则下列说法正确的是()A.干旱开始后,蓄水量每天减少20万米3B.干旱开始后,蓄水量每天增加20万米3C.干旱开始时,蓄水量为200万米3D.干旱第50天时,蓄水量为1200万米328.一个水池接有甲,乙,丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量v(m3)与时间t(h)之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是()28.如图2-5-16,在矩形ABCD中,AB=10cm,BC=8cm.点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止,若点P、点Q同时出发,点P的速度为1cm/s,点Q的速度为2cm/s,as时点P、点Q同时改变速度,点P的速度变为bcm/s,点Q的速度变为dcm/s,图2-5-17是点P出发x秒后△APD的面积S1(cm2)与x(s)的函数关系图象;图2-5-18是点Q出发xs后面AQD的面积S2(cm2)与x(s)的函数关系图象.⑴参照图2-5-17,求a、b及图中c的值;⑵求d的值;29.已知,如图1点G是BC中点,点H在AF上,动点H在AF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积S(cm2)关于运动时间t(s)的函数图象。如图2,若AB=6cm,回答下列几个问题:(1)图1中的BC、CD、DE、EF、FH、AH的长度各为多少?(2)图2中M点表示第4秒时,S的值为多少?(3)图2中N点表示第几秒?对应的S的值为多少?A.乙>甲B.丙>甲C.甲>乙D.丙>乙25题24题AHCBGFDE(图1)MN24712t(s)S(cm2)(图2)0